## Co-dominant SCAR Marker, P6-25, for Detection of the ty-3, Ty-3, and Ty-3a alleles at $\mathbf{2 5} \mathbf{c M}$ of Chromosome 6 of Tomato

Katie S. Jensen ${ }^{1}$, Bram van Betteray ${ }^{2}$, Josie Smeets ${ }^{2}$, Yuanfu Ji³ Jay W. Scott ${ }^{3}$, Luis Mejía ${ }^{4}$, Michael J. Havey ${ }^{5}$, and Douglas P. Maxwell ${ }^{1}$

Aug. 18, 2007
${ }^{1}$ University of Wisconsin-Madison, Dept. of Plant Pathology, 1630 Linden Dr., Madison, WI 53706
${ }^{2}$ Nunhems BV, PO Box 4005, 6080 AC Haelen, The Netherlands
${ }^{3}$ University of Florida, IFAS, Gulf Coast Research \& Education Center, 14625 CR 672, Wimauma,
FL 33598
${ }^{4}$ Universidad de San Carlos, Guatemala
${ }^{5}$ University of Wisconsin-Madison, Dept. of Horticulture, Madison, WI and USDA
Email: dpmax@plantpath.wisc.edu
Breeding for resistance to begomoviruses in tomato can be aided by the availability of PCRbased markers for the resistance loci. Four begomovirus-resistance loci or regions have been mapped to chromosome 6 (Agrama and Scott, 2006; Chagué et al., 1997; Ji and Scott, 2006b; Ji et al., 2007; Zamir et al., 1994). The Ty-1 locus, which is part of the introgression derived from Solanum chilense LA1969, is located between markers TG297 (4cM) and TG97 ( 8.6 cM ) (Zamir et al., 1994). Agrama and Scott (2006) reported three regions that contributed to resistance in breeding lines with introgressions from S. chilense LA2779 or LA1932. One region corresponded to the region having the Ty-1 locus. Another region was the Ty-3 locus, which was mapped to a region between cLEG-31-P16 (20 cM) and T1079 (27 cM) (Ji and Scott, 2006b; Ji et al., 2007). The third region was near the self-pruning ( $s p$ ) and potato leaf (c) loci. Another begomovirusresistance QTL, derived from an introgression from Solanum pimpinellifolium, was mapped near the marker TG153 (33 cM; Chagué et al., 1997). This is very near the Ty-3 locus from LA2779derived lines.

Previously, Ji and Scott (2006a, 2006b; Ji et al., 2007) reported that the Ty-3 locus mapped to a region that included the FER locus ( 25 cM , BAC clone 56B23, AY678298). Jensen and Maxwell (Maxwell et al., 2007) found that the sequences for the G8 gene of the BAC clone 56B23 are different for lines derived from LA2779 and LA1932. To differentiate the two introgressions, the one from LA2779 is designated Ty-3 and the one from LA1932, Ty-3a. The co-dominant SCAR marker, FLUW25, will distinguish between the ty-3 and Ty-3 alleles, but the FLUW25 marker will not detect the Ty-3a allele (see FLUW25 SCAR marker, this web site). This report describes a set of PCR primers that provide co-dominant SCAR markers for detection of the $t y-3, T y-3$ and $T y-3 a$ alleles.

## Primer Design:

Since the FLUW25 primer pair did not give a fragment with LA1932-derived lines, a new set of primers was designed using the sequences from the FLUW-25 fragments for S. Iycopersicum and the S. chilense introgression and the BAC 56B23 as a starting point. Also, van Betteray and Smeets had determined that it was the FLUW25R primer that did not anneal to the LA1932 sequence. This new primer pair was designed to give smaller PCR fragments than the FLUW25 primer pair: forward primer, P6-25-F2, 5' GGT AGT GGA AAT GAT GCT GCT C, and reverse primer, P6-25-R5, 5' GCT CTG CCT ATT GTC CCA TAT ATA ACC. The P6-25-F2/P6-25-R5 primers were expected to give fragment sizes for S. lycopersicum and the S. chilense LA2779 introgression of 320 bp and 453 bp , respectively.

DNA Extraction and PCR Methods: DNA was extracted from fresh leaves of plants with PUREGENE® DNA Purification Kit (Gentra Systems, Inc., Minneapolis, MN) and DNA adjusted to approximately $10 \mathrm{ng} / \mu \mathrm{l}$. PCR parameters were for $25-\mu \mathrm{l}$ reactions containing $2.5 \mu \mathrm{l} 2.5 \mathrm{mM}$ dNTPs, $5 \mu \mathrm{l} 5 \mathrm{x}$ buffer, $2.5 \mu \mathrm{l} 2.5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.1 \mu \mathrm{l}$ ( 0.5 units) GoTaq DNA polymerase (Promega Corp., Madison, WI), $2.5 \mu \mathrm{l}$ each forward and reverse primer at $10 \mu \mathrm{M}, 2-5 \mu$ l of DNA extract, and water. PCR cycles were 94 C for $4 \mathrm{~min}, 35$ cycles of 94 C for $30 \mathrm{sec}, 53 \mathrm{C}$ for 1 min , and 72 C for 1 min . These cycles were followed by 72 C for 10 min , and then the reaction was held at 4 C . PCR reactions were performed in the MJ DNA Engine PT200 ThermocyclerTM (MJ Research Inc., Waltham, MA). PCR-amplified fragments were separated by gel electrophoresis with $1.5 \%$ agarose in 0.5 X TBE buffer, stained with ethidium bromide, and visualized with UV light. ssDNA was digested in PCR reactions with shrimp alkaline phosphatase (Promega Corp.) and exonuclease I (Epicentre, Madison, WI) and the PCR-fragments were directly sequenced with Big Dye Sequencing Kit ${ }^{\text {TM }}$ and analyzed by the Biotechnology Center, University of WisconsinMadison.

## Results and Discussion:

The primer set, P6-25-F2 and P6-25-R5, was designed to include the $143-\mathrm{nt} t y-3 / T y-3$ indel and to give smaller fragments than the FLUW25 primer set (Fig. 1). With begomovirus-resistant breeding lines derived from either the S. chilense LA2779 source, Gc9, or the Ih902 line (Vidavsky and Czosnek, 1998), the expected $450-\mathrm{bp}$ Ty-3 fragment was obtained. A $320-\mathrm{bp}$ ty-3 fragment was amplified from breeding lines lacking the introgression from either of these two begomovirusresistance sources. A 630-bp Ty-3a fragment was obtained from lines derived from S. chilense LA1932, such as Gc171. Heterozygous hybrids were easily detected with these primers, which amplified two fragments corresponding to the S. lycopersicum ty-3 fragment ( 320 bp ) and either the Ty-3 ( 450 bp ) or the Ty-3a ( 630 bp ) fragment (Fig. 2). No F1 hybrids were available to test for fragments with the Ту3/Ty3a genotype, but it is expected that this primer pair would also amplify two fragments ( 450 and 630 bp ) with this genotype.


Fig. 1. PCR fragments with primers P6-25-F2/P6-25-R5. Lane 1, 100-bp Brenchtop DNA ladder, Promega; Lane 2, M82-1-8 (ty-3/ty-3); Lane 3, Gc9 (Ty-3/Ty-3); Lane 4, Romelia, F1 hybrid, (Ty-3/ty-3); Lane 5, Gc171 (Ty-3a/Ty-3a); Lane 6, GTc191-3, F1 hybrid, (Ty-3a/ty-3); Lane 7, 100bp marker.

The three sizes of the P6-25-F2/P6-25-R5 fragments were sequenced (see below). The $320-\mathrm{bp}$ and the 450-bp fragments corresponded to the sequences of $S$. Iycopersicum and of the Ty-3 locus associated with lines derived from S. chilense LA2779, respectively. The 650-bp fragment from Gc171 had one large insert, when compared with the S. Iycopersicum sequence.

Conclusions: This set of primers detect co-dominant SCAR marker, P6-25, for the ty-3, Ty-3 and Ty-3a alleles at the FER locus, 25 cM . It is not known how closely these markers are to the functional Ty-3 gene (Ji et al., 2007), so it is possible that some breeding lines would give false
negative or false positive results. Also, it is not known how this primer pair will function with introgressions from other accessions of wild species.

Acknowledgements: This project was funded in part by USAID-CDR (TA-MOU-05-C25-037) and USAID-MERC (GEG-G-00-02-00003-00) grants to D. P. Maxwell, by the College of Agricultural and Life Sciences at University of Wisconsin-Madison, and by grants from Unilever Bestfoods Ltd. and the Florida Tomato Committee to J. W. Scott.

## Literature Cited:

Agrama, H.A., and Scott, J.W. 2006. Quantitative trait loci for tomato yellow leaf curl virus and tomato mottle virus resistance in tomato. J. Am. Hortic. Sci. 131:267-272.
Chagué, V., Mercier, J.C., Guenard, M., de Courcel, A., and Vedel, F. 1997. Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor. Appl. Genet. 95:671-677.
Ji, Y., and Scott, J.W. 2006a. Development of breeder friendly markers for begomovirus resistance genes derived from L. chilense. Proc Tomato Breeders Table, Tampa, FL, USA. roundtable06.ifas.ufl.edu/Schedule.htm
Ji, Y. and Scott, J.W. 2006b. Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6. Rept. Tomato Genetics Coop. 56:22-25.

Ji, Y., Schuster, D.J., and Scott, J.W. 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breeding (in press)
Maxwell, D.P., Martin, C.T., Garcia, B.E., Salus, M.S., Jensen, K.S, Havey, M.J. and Mejia, L. 2007. Markers for tomato chromosomes. www.plantpath.wisc.edu/GeminivirusResistantTomatoes

Mejía, L., Teni, R.E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M.K., and Maxwell, D.P. 2005. Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. Acta Hort. 695:251-255.
Vidavsky, F., and Czosnek, H. 1998. Tomato breeding lines immune and tolerant to tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88:910-914.
Zamir, D., Michelson, I., Zakay, Y., Navot, N., Zeidan, N., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., van-Oss, H., Kedar, N., Rabinowitch, H.D., and Czosnek, H. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88:141-146.

Sequences: (PCR fragments form primer pair P6-25-F2/R5)
HUJ-VF, S. lycopersicum (susceptible), 320 bp
1 GGTAGTGGAA ATGATGCTGC TCAAATTATT GTGTGAACAT ATTATGAGAG GTAGGATTAA
61 GAATGAAGTT ATATAAGATA AAGTGGAAGT TACTTTTCGA AAAAAAAAGA AAGACGAAAA
121 AAATGAGATT GAAATGGATT GAATACGTGA AGAAGAGATG CATGGGTTCA CCAATAAAAA 181 GGTTTGAGAG TTTGACTTAA GAAGAGGTAG AAGTAGGTTG AAAAACAACT AGGTAAAGTT 241 TTACTTTTAG TTTTGTTTTG ATTGCACATT TTTTTAGTCG AAATAGAAAC AGAGGTTATA 301 TATGGGACAA TAGGCAGAGC

Gc143-2, inbred line with resistance to begomoviruses from LA2779, S. chilense, 453 bp;

| 1 | GGTAGTGGAA | ATGATGCTGC | TCAAATTAAT | GTGTGAACAT | GAGAGGTAGG | ATTAGAAATG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 61 | AAGTTATATA | AGATAAAGTG | GAAGTAACTT | CCAATAAAAA | AAGACGAAAA | AAATGAGATT |
| 121 | GAAATGGGTT | GAATACGTGA | AGAAGAGATG | CATGGATTCA | CCAATAAAAA | GGTATGAGAG |
| 181 | TTTGACTTAA | GAAGATGTAG | AAGTAGGTTG | AAAAAAAACT | ACGTAAAGAT | GATTAGATAA |
| 241 | GATATATCAC | GAGGACACGA | CTATAGCAAG | ATATGGCAGC | AGAGTTTTGT | CGTATTGTTA |
| 301 | CATGGAAGAG | GTAAGGGACT | TGTCTCTGCT | TTTCATGCAC | ATTGCTTCAA | TTTACTTTGT |
| 361 | TAGACTTGTT | ATTTTACTTT | TAGTTCTGTT | TTGATTGCAC | ATTTTTTTAG | TCGAAATAGA |
| 421 | AACAGAGGT | ATATATGGGA | CAATAGGCAG | AGC |  |  |

Gc171, inbred line with resistance to begomoviruses from LA1932, S. chilense, 623 bp;

| 1 | GGTAGCGGAA | ATTATGCTGC | T | GTGTGAACAT | AG |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 61 | AAATGAAGAT | ATGTAAGATA | AAGTGGGTGA | CTTTCAAAAA | AAAAAAAGAC | GAAAAAAATG |
| 121 | AGATTGAAAT | GGATTGAATA | CGTGAAGAAG | AGATGCATGG | ATTCATCAAT | AAAGAGGTGT |
| 181 | GAGAGTTTCA | CTTAAGAAGA | AATAGAAGTA | GGTTGAAGAA | CAACTGAAGA | TGATTAGATA |
| 241 | AGATATATCA | CAATTTCAAT | AAATGAGGAC | ACGACTATAG | CAAGATATGG | TAGCAGAGTT |
| 301 | TTATCGTATT | GTTACGTGGA | AGAGGTAAGG | TACTTGTCTC | TACTTTTCAT | GCACATTGCT |
| 361 | TCAGTTTACT | TTGTTAGACT | TGTTATTTTA | ATGAGATTCG | AACCTTGGTA | CAACAATATT |
| 421 | AAAAGAGTTT | TACCCATCTT | AGAATCATTG | GGTCAACTAT | ATGATTTATT | CATTAGCTGC |
| 481 | TTTATGTTAA | TTTTATACAA | ATATCTATCG | ATTTCTACAT | AGATATATAT | ATTTCGTAAC |
| 541 | AAAGTTAATG | AGTGCTCGAG | CACCCAGCGG | ACAACACGTG | GGTCCGCCCT | GACAGAGGTT |
| 601 | ATATATGGGA | CAATAGGCAG | AGC |  |  |  |

# Sequence of P6-25-F2/P6-25-R5 fragments at 25 cM of chromosome VI 

Aug. 8, 2007, Katie S. Jensen and Douglas P. Maxwell, University of Wisconsin-Madison
HUJ-VF (ty3/ty3); Gc143-2 (Тy3/Ty3); Gc171 (Тy3a/Ty3a)

| HUJ-VF | GGTAGTGGAAATGATGCTGCTCAAATTATTGTGTGAACATATTATGAGAGGTAGGATTAA | 60 |
| :---: | :---: | :---: |
| Gc143-2 | GGTAGTGGAAATGATGCTGCTCAAATTAaTGTGTGAACAT. . . . GAGAGGTAGGATTAg | 55 |
| Gc171 | GGTAGcGGAAATtATGCTGCTCAAATTAaTGTGTGAACATATTATGAGAGGTAGGATTAg | 60 |
| Consensus | ggtag ggaaat atgctgctcaaatta tgtgtgaacat gagaggtaggatta |  |
| HUJ-VF | GAATGAAGTTATATAAGATAAAGTGGAAGTTACTTTTCGAAAAAAAAAGAAAGACGAAAA | 120 |
| Gc143-2 | aAATGAAGTTATATAAGATAAAGTGGAAGTaACTTcc. . . . AAtAAAaAAAGACGAAAA | 110 |
| Gc171 | aAATGAAGaTATgTAAGATAAAGTGG . GTgACTTTc... AAAAAAAAAAAAGACGAAAA | 115 |
| Consensus | aatgaag tat taagataaagtgg gt actt aa aaa aaagacgaaaa |  |
| HUJ-VF | AAATGAGATTGAAATGGATTGAATACGTGAAGAAGAGATGCATGGGTTCACCAATAAAAA | 180 |
| Gc143-2 | AAATGAGATTGAAATGGgTTGAATACGTGAAGAAGAGATGCATGGaTTCACCAATAAAAA | 170 |
| Gc171 | AAATGAGATTGAAATGGATTGAATACGTGAAGAAGAGATGCATGGaTTCAtCAATAAAgA | 175 |
| Consensus | aaatgagattgaaatgg ttgaatacgtgaagaagagatgcatgg ttca caataaa a |  |
| HUJ-VF | GGTTTGAGAGTTTGACTTAAGAAGAGGTAGAAGTAGGTTGAAAAACAACTAGGTAAAG. | 238 |
| Gc143-2 | GGTaTGAGAGTTTGACTTAAGAAGAtGTAGAAGTAGGTTGAAAAAaAACTAcGTAAAGat | 230 |
| Gc171 | GGTgTGAGAGTTTcACTTAAGAAGAaaTAGAAGTAGGTTGAAgAACAACTg . . . . AAGat | 231 |
| Consensus | ggt tgagagttt acttaagaaga tagaagtaggttgaa aa aact aag |  |
| HUJ-VF |  | 238 |
| Gc143-2 | gattagataagatatatcac...........gaggacacgactatagcaagatatggc | 277 |
| Gc171 | gattagataagatatatcacaatttcaataaatgaggacacgactatagcaagatatggt | 291 |
| Consensus |  |  |
| HUJ-VF |  | 238 |
| Gc143-2 | agcagagttttgtcgtattgttacatggaagaggtaagggacttgtctctgcttttcatg | 337 |
| Gc171 | agcagagttttatcgtattgttacgtggaagaggtaaggtacttgtctctacttttcatg | 351 |
| Consensus |  |  |
| HUJ-VF |  | 238 |
| Gc143-2 | cacattgcttcaatttactttgttagacttgtta | 371 |
| Gc171 | cacattgcttcagtttactttgttagacttgttattttaatgagattcgaaccttggtac | 411 |
| Consensus |  |  |
| HUJ-VF |  | 238 |
| Gc143-2 |  | 371 |
| Gc171 | aacaatattaaagagttttacccatcttagaatcattgggtcaactatatgatttattc | 471 |
| Consensus |  |  |
| HUJ-VF |  | 238 |
| Gc143-2 |  | 371 |
| Gc171 | attagctgctttatgttaattttatacaaatatctatcgatttctacatagatatatata | 531 |
| Consensus |  |  |
| HUJ-VF | . .TTTTACTTTTAGTTTTGTTTTGATTGCACATTTTTTTAGTCGAAATAGAA | 288 |
| Gc143-2 | . TTTTACTTTTAGTTcTGTTTTGATTGCACATTTTTTTAGTCGAAATAGAA | 421 |
| Gc171 | tttcgtaacaaagTtaaTgagtgcTcGagcacccaGCggAcaacacgtGggtccgccetg | 591 |
| Consensus | $\begin{array}{llllll}\text { t } & \mathrm{t} & \mathrm{g} & \mathrm{gc} & \mathrm{a} & \mathrm{g}\end{array}$ |  |
| HUJ-VF | ACAGAGGTTATATATGGGACAATAGGCAGAGC | 320 |
| Gc143-2 | ACAGAGGTTATATATGGGACAATAGGCAGAGC | 453 |
| Gc171 | ACAGAGGTTATATATGGGACAATAGGCAGAGC | 623 |
| Consensus | acagaggttatatatgggacaataggcagagc |  |

