Evaluation of the JB1 marker for detection of the Ty1 introgression in chromosome 6

Brenda Esperanza Garcia and Douglas P. Maxwell University of Wisconsin-Madison

9 April 2011
Recently, Pérez de Castro et al. (2007) developed a CAPS marker linked to the Ty-1 gene for resistance to Tomato yellow leaf curl virus. This marker was designed from the RFLP CT21 (8.6 cM) on chromosome 6 . This marker was evaluated with the some of the same lines as used previously for the UWTy1 (TG97) marker. It was of particular interest to see if this marker detected the S. peruvianum introgression associated with the Mi/Mi lines (GhT44-2).

Material and Methods

Design of PCR primers: Primers: JB1F 5' aac cat tat ccg gtt cac tc 3' and JB1R 5' ttt cca ttc ctt gtt tct ctg 3' (Pérez et al. 2007).

Germplasm: M82-1-8 (M82, VF1, F. Vidavski, Hebrew University); Heinz 1706 (VF1, R. Ozminkowski, Heinz Seeds); Gh2 (Mi/Mi, Ty1/Ty1, Ty3/Ty3, L. Mejía, San Carlos University, Guatemala); Gc171 (mi/mi, Ty3a/Ty3a, Ty4/Ty4, I2, L. Mejía, San Carlos University); Gc9 (mi/mi, Ty1/Ty1, Ty3/Ty3, I2, L. Mejía, San Carlos University); Marwa (hybrid Syngenta, xxxx, N, F1F2, Ve, tolerant to TYLCV); Llanero (hybrid, Semillas Tropicales SA, Mi/mi, ty1/ty1, I2); Romelia (Semillas Tropicales SA, Mi/mi, Ty1/ty1, I2)

PCR and Restriction Enzyme Methods: DNA was extracted from fresh leaves of plants with PUREGENE® DNA Purification Kit (Gentra Systems, Inc., Minneapolis, MN) and DNA adjusted to approximately $10 \mathrm{ng} / \mu \mathrm{l}$. PCR parameters were for $25-\mu \mathrm{l}$ reactions containing $2.5 \mu \mathrm{l} 2.5 \mathrm{mM}$ dNTPs, $5 \mu \mathrm{l} 5 \mathrm{x}$ buffer, $2.5 \mu \mathrm{l} 2.5 \mathrm{mM} \mathrm{MgCl}, 0.1 \mu \mathrm{l}$ (0.5 units) GoTaq DNA polymerase (Promega Corp., Madison, WI), $2.5 \mu \mathrm{l}$ each forward and reverse primer at $10 \mu \mathrm{M}, 2-5 \mu \mathrm{l}$ of DNA extract, and water. PCR cycles were 94 C for 3 min , the 35 cycles of 94 C for $30 \mathrm{sec}, 53 \mathrm{C}$ for 1 min , and 72 C for 1 min . These cycles were followed by 72 C for 10 min , and then the reaction was held at 4 C . PCR reactions were performed in the MJ DNA Engine PT200 Thermocycler ${ }^{\text {TM }}$ (MJ Research Inc., Waltham, MA). For sequencing, ssDNA (primers) were digested in PCR reactions with shrimp alkaline phosphatase (Progmega Corp.) and exonuclease I (Epicentre, Madison, WI) and the PCR-fragments directly sequenced with Big Dye Sequencing Kit ${ }^{T M}$ and analyzed by the Biotechnology Center, University of Wisconsin-Madison. PCR-amplified fragments were separated on 2% agarose gels in 0.5 XTBE buffer, stained with ethidium bromide and visualized with UV light.

The PCR program listed in the Pérez et al. (2007) was tried and no bands were obtained. Ana Pérez de Castro was contacted and she suggested that we try 53 C and vary the DNA and MgCl_{2} concentrations. After this test, the above conditions gave adequate band intensity for direct sequencing.

Results and Discussion

The JB1 primers gave a single, sharp 930-bp fragment with the nine lines tested. These fragments were sequenced (Fig. 1) and three difference sequences were obtained. i) One sequence for S. Iycopersicum associated with M82-1-8, Gc171, and Heinz 1706; ii) another for TY52 (Ty1 from S. chilense LA1969), which was identical for Glh902 and Gc9, and iii) then another sequence for S. peruvianum for the GhT44-1 (Mi/Mi) line. So for both TG97 (UWTy1) and JB-1 markers for Ty-1, there can be three alleles in this region: S. lycopersicum, S. peruvianum (from Mi/Mi lines) and S. chilense (same as TY52). Gc9, Glh902b and Gh194-1 all have same indels as TY52 and thus have the Ty-1 gene in this region. There were very characteristic regions associated with the sequences for each allele, thus a sequence analysis would be considerably more reliable than the SNP difference detected by the CAPS marker to distinguish ty1, Ty1 and Mi sequences..

For Taql sites, Heinz (S. lyc allele) and GhT44-1 (S. per allele) have two sites and TY52 (S. chil allele) has one site. Thus, the CAPS marker can not distinguish between the S. lycopersicum allele and the S. peruvianum allele, but can detect the S. chilense allele.

Note: The authors are very appreciative of the understanding and patience of Ana Pérez de Castro for her assistance in this research.

Reference:
Pérez de Castro, A., J.M. Blanca, M.J. Díez, and F. N. Viñals. 2007. Identification of a CAPS marker tightly linked to Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. Eur. J. Plant Pathol. 117:347-356.

Fig. 1. JB1 fragment sequence for Heinz and Gc171(S. Iycopersicum), TY52 (Ty1/Ty1, S. chilense), and GhT44-1 (Mi/Mi, S. peruvianum).

Heinz-JB1	CAGATTGCCACTG	17
Gc171-JB1	CAGATTGCCACTG	17
TY52-JB1	CAGATTGCCACTG	13
GhT44-1	aaccattatccggttcactcccacttccaacaaaccattcttcaCaGCAGATTGCCACTG	60
Consensus	cagattgccactg	
Heinz-JB1	CTTTACTTGTGGCTCAAACGCCACTTTCTTTTCCACCCATTCATACGAATCTCTCACTAA	77
Gc171-JB1	CTTTACTTGTGGCTCAAACGCCACTTTCTTTTCCACCCATTCATACGAATCTCTCACTAA	77
TY52-JB1	CTTTACTTGTGGCTCAAACGCCACTTTCTTTTCCACCCAnnnnnACGAATCTCTCACTAA	73
GhT44-1	CTTTACTTGTGGCTCAAACGCCACTTTCTTTTCCACCCATTCATACGAATCTCTCACTAA	120
Consensus	ctttacttgtggctcaaacgccactttcttttccaccea acgaatctctcactaa	
Heinz-JB1	CTTCTCATTCCATCCCACTTTCTTAACGTACTCATCACTCGCCCTCGTAAAGAACCCCGC	137
Gc171-JB1	CTTCTCATTCCATCCCACTTTCTTAACGTACTCATCACTCGCCCTCGTAAAGAACCCCGC	137
TY52-JB1	CTTgTCATTCCATCCCACTTTCTTAACGTACTCATCACTCGCCCTCGTAAAGAACCCCGC	133
GhT44-1	CTTgTCATTCCATCCCACTTTCTTAACGTACTCATCACTCGCCCTCGTAAAGAACCCCGC	180
Consensus	ctt tcattccatcccactttcttaacgtactcatcactcgccotcgtaaagaaccccgc	
Heinz-JB1	ATTAATAGCTGAACCACCACCTAAGACGCGAGCACGGTGGTTGAAGACACCGTCTGTAGA	197
Gc171-JB1	ATTAATAGCTGAACCACCACCTAAGACGCGAGCACGGTGGTTGAAGACACCGTCTGTAGA	197
TY52-JB1	ATTAATAGCTGAACCACCACCTAAGACGCGAGCACGGTGGTTGAAtACACCGTCTGTAGA	193
GhT44-1	ATTAATAGCTGAACCACCACCTAAGACGCGAGCACGGTGGTTGAAtACACCGTCTGTAGA	240
Consensus	attaatagctgaaccaccacctaagacgcgagcacggtggttgaa acaccgtctgtaga AluI	
Heinz-JB1	GATGAAAAGTTGCGAGGGAGATGACGGAGAAATGTTAGCTAAGTTGCTTGAGAAACCGTT	257
Gc171-JB1	GATGAAAAGTTGCGAGGGAGATGACGGAGAAATGTTAGCTAAGTTGCTTGAGAAACCGTT	257
TY52-JB1	GATGAAAAGTTGCGAGGGAGATGACGGAGAAATGTTAGCTAAGTTGCTTGAGAAACCGTT	253
GhT44-1	GATGAAAAGTTGCGAGGGAGATGACGGAGAAATGTTgGCTAAGTTGCTTGAGAAACCGTT	300
Consensus	gatgaaaagttgcgagggagatgacggagaaatgtt gctaagttgcttgagaaaccgtt	
Heinz-JB1	AATGTTTGTGATGTTTGGGTTTCCATAGGGTAAGTCACCTCTTTCTAATAACAGAACATT	317
Gc171-JB1	AATGTTTGTGATGTTTGGGTTTCCATAGGGTAAGTCACCTCTTTCTAATAACAGAACATT	317
TY52-JB1	AATGTTTGTGATGTTTGGGTTTCCATAGGGTAAGTCACCTCTTTCTAATAACAcAACATT	313
GhT44-1	AATGTTTGTGATGTTTGGGTTTCCATAGGGTAAGTCACCTCTTTCTAATAACAGAACATT	360
Consensus	aatgtttgtgatgtttgggtttccatagggtaagtcacctctttctaataaca aacatt	
Heinz-JB1	GAACGATTGTGAGAGTGTTGCTGCTAATGCACAACCAGCAGTTCCTCCTCCTATTATGAT	377
Gc171-JB1	GAACGATTGTGAGAGTGTTGCTGCTAATGCACAACCAGCAGTTCCTCCTCCTATTATGAT	377
TY52-JB1	GAACGATTGTGAGAGTGTTGCTGCTAATGCACAACCAGCAGTTCCTCCTCCTATTATGAT	373
GhT44-1	GAACGATTGTGAGAGTGTTGCTGCTAATGCACAACCAGCAGTTCCTCCTCCTATTATGAT	420
Consensus	gaacgattgtgagagtgttgctgctaatgcacaaccagcagttcctcctcctattatgat TaqI TaqI	
Heinz-JB1	GTAATCGAACGAAATAACCTTTGGTGATGACGTAGCATCTCTCGCAAACGTCGAATATGG	437
Gc171-JB1	GTAATCGAACGAAATAACCTTTGGTGATGACGTAGCATCTCTCGCAAACGTCGAATATGG	437
TY52-JB1	GTAATCGAACGAAATAACCTTTGGTGATGACGTAGCATCTCTtGCAAACGTgGAATATGG	433
GhT44-1	GTAATCGAACGAAATAACCTTTGGTGATGACGTAGCATCTCTCGCAAACGTCGAATATGG	480
Consensus	gtaatcgaacgaaataacctttggtgatgacgtagcatctct gcaaacgt gaatatgg CviR1	
Heinz-JB1	GGCTACATTGCATCAAACAATTATTAATATTTTAATTTTATTTATTTGACAAAAACTCTT	497
Gc171-JB1	GGCTACATTGCATCAAACAATTATTAATATTTTAATTTTATTTATTTGACAAAAACTCTT	497
TY52-JB1	GGCTgCATTGCATCAAACAATTATTAATATTTTAATTTTATTTATTTGACAAAAACTCTT	493
GhT44-1	GGCTACATTGCATCAAACAATTATTAATATTTTcATTTTATTTATTTGACAAAAACTtTT	540
Consensus	ggct cattgcatcaaacaattattaatatttt attttatttatttgacaaaaact tt	

Heinz-JB1	TTTTTTTT......... CTAGATATTCTATGATCATCATAGAATTTGT	536
Gc171-JB1	TTTTTTTT............. CTAGATATTCTATGATCATCATAGAATTTGn	536
TY52-JB1	TTTTTTTTtaaaaaaaaatagagttagCTAGATATTCTATGATCATCATAGAATTTGT	553
GhT44-1	TTaaaaaataaaataaataagagttagCTAGATATTCTATGATCATCATAGAATTTGT	600
Consensus	tt ctagatattctatgatcatcatagaatttg	
Heinz-JB1	GACCCTTTTATTGATTTTGAATTTTTGATAGTAAATTTTTTTTTTAGCATCAATACATGT	596
Gc171-JB1	GACCCTTTTATTGATTTTGAATTTTTGATAGTAAATTTTTTTTTTAGCATCAATACATGT	596
TY52-JB1	GACCCTTTTATTGATTTTGAATTTTTGATgGTAAAgaaTTTTTTTAGCATCAATACATtT	613
GhT44-1	GACCCTTTTATTGATTTTGAATTTTTGATAGTAAAgaaTTTTTTTAGCATCAATACATGT	660
Consensus	gaccottttattgattttgaatttttgat gtaaa tttttttagcatcaatacat t	
Heinz-JB1	TAACTTGTCATAGCAAGTTAGTTGTCTTATTTTGAAGTTACCAATTCTATTTACCTTCAA	656
Gc171-JB1	TAACTTGTCATAGCAAGTTAGTTGTCTTATTTTGAAGTTACCAATTCTATTTACCTTCAA	656
TY52-JB1	TAACTTGTtATAGCAAGTTAGTTGTCTTATTTTGAAGTTACCAATTCTATTTACCTTCAA	673
GhT44-1	TAACTTGTtATAGCAAGTTAGTTGTCTTATTTTGAAGTTACCAATTCTATTTACCTTCAA	720
Consensus	taacttgt atagcaagttagttgtcttattttgaagttaccaattctatttaccttcaa	
Heinz-JB1	TTGACTTTTAGCTAATTAACTTGAACAATGTAAAACTAAATTCATTTTTCTACCCCATCT	716
Gc171-JB1	TTGACTTTTAGCTAATTAACTTGAACAATGTAAAACTAAATTCATTTTTCTACCCCATCT	716
TY52-JB1	TTGACTTTTAGCTAATTAACTTGAACAATGgAAAACTAAATTCATTTTTCTACCCCATCT	733
GhT44-1	TTGACTTTTAGCTAATTAACTTGAACAATGTAAAACTAAATTCATTTTTCTACCCCATCT	780
Consensus	ttgacttttagctaattaacttgaacaatg aaaactaaattcatttttctaccccatct	
Heinz-JB1	TAGTATTATTTTTTTTAAAAAAAAAATAAATTGCATCTACGTACAAAGTGTATCTTTTAA	776
Gc171-JB1	TAGTATTATTTTTTTTAAAAAAAAAATAAATTGCATCTACGTACAAAGTGTATCTTTTAA	776
TY52-JB1	TAGTATTtTTTTTTTTtt. AAAAAAgAAATTGCATCTACGTACAAAagGTATCTTTTAA	791
GhT44-1	TAGTATTATTTTTTTTt. . .AAAAAAgAAATTGCATCTACGTACAAAaTGTATCTTTTAA	837
Consensus	tagtatt tttttttt aaaaaa aaattgcatctacgtacaaa gtatcttttaa	
Heinz-JB1	GACAAAAGAAAATGGAAGCAAAGAGAAGTGATTATG	812
Gc171-JB1	GACAAAAGAAAATGGAAGCAAAGAGAAGTGATTATG	812
TY52-JB1	GACAAAAGAAAATGGAAGCAAAtAGAAcTGATTATGgaatagaga	836
GhT44-1	GACAAAAGAAAATGGAAGCAAAGAGAAGTGATTATGgaagagagaagagatcacaattac	897
Consensus	gacaaaagaaaatggaagcaaa agaa tgattatg	
GhT44-1	ctttctcagagaaacaaggaatggaaa	924
Consensus		

NOTE: The best sequence in both directions was for GhT44-1, which has the Mi/Mi phenotype and thus, it is suspected that the introgression for this marker is from S. peruvianum. GhT44-1 has an introgression for TG97, which is different than the introgression for TY52 and is different than S. lycopersicum. TY52 is Ty-1/Ty-1 and Heinz and Gc171 are both S. lycopersicum sequences at this marker and also TG97 and $\mathrm{mi} / \mathrm{mi}$. Gc171 is Ty3a/Ty3a (25 cM), which is on chromosome 6 . This line is very resistance to geminiviruses in Guatemala.

