Co-dominant SCAR Marker, P6-25, for Detection of Ty-3, Ty-3a, and Ty3b introgressions from three Solanum chilense accessions at 25 cM of Chromosome 6 of BegomovirusResistant Tomatoes

Yuanfu Ji ${ }^{1}$, Bram van Betteray ${ }^{3}$, Josie Smeets ${ }^{3}$, Katie S. Jensen ${ }^{2}$, Luis Mejía ${ }^{4}$, Jay W. Scott ${ }^{1}$, Michael J. Havey ${ }^{5}$, and Douglas P. Maxwell ${ }^{2}$

${ }^{1}$ University of Florida, IFAS, Gulf Coast Research \& Education Center, 14625 CR 672, Wimauma, FL 33598
${ }^{2}$ University of Wisconsin-Madison, Dept. of Plant Pathology, 1630 Linden Dr., Madison, WI 53706
${ }^{3}$ Nunhems BV, PO Box 4005, 6080 AC Haelen, The Netherlands
${ }^{4}$ Universidad de San Carlos, Guatemala
${ }^{5}$ University of Wisconsin-Madison, Dept. of Horticulture, Madison, WI and U.S. Dept. Agr.
Email: dpmax@plantpath.wisc.edu
Breeding for resistance to begomoviruses in tomato can be greatly aided by the availability of PCR-based markers for the various resistance loci. Four begomovirus-resistance loci or regions have been mapped to chromosome 6 (Agrama and Scott, 2006; Chagué et al., 1997; Ji and Scott, 2006b; Ji et al., 2007; Zamir et al., 1994). The Ty-1 locus, which is part of the introgression derived from Solanum chilense LA1969, is located between markers TG297 (4 cM) and TG97 (8.6 cM) (Zamir et al., 1994). Agrama and Scott (2006) reported three regions that contributed to resistance in breeding lines with introgressions from S. chilense LA2779 or LA1932. One region corresponded to the region having the Ty-1 locus. Another region was the Ty-3 locus, which was mapped to a region between cLEG-31-P16 (20 cM) and T1079 (27 cM) (Ji and Scott, 2006b; Ji et al., 2007). The third region was near the self-pruning ($s p$) and potato leaf (c) loci. Another begomovirus-resistance QTL, derived from an introgression from Solanum pimpinellifolium, was mapped near the marker TG153 (33 cM; Chagué et al., 1997).

Previously, Ji and Scott (2006a, 2006b; Ji et al., 2007) reported the development of SCAR and CAPS markers linked to begomovirus resistance genes derived from S. chilense on chromosome 6, and they determined that the Ty-3 locus mapped to a region that included the FER locus (25 cM , BAC clone 56B23, AY678298). Jensen and Maxwell (Maxwell et al., 2007) found that the sequences for the G8 gene of the BAC clone 56B23 are different for lines derived from S. chilense_LA2779 and LA1932. To differentiate the two introgressions, the one from LA2779 is designated Ty-3 and the one from LA1932, Ty-3a. A co-dominant SCAR marker, FLUW25, was reported by Ji et. (2007), which would detect ty3 (S. lycopersicum) and Ty3 loci. This report describes a set of PCR primers, P6-25F2/P6-25R5, that provide co-dominant SCAR markers for detection of the Ty-3 and Ty-3a introgressions and a newly discovered introgression from S. chilense LA1969.

Primer Design:

Initially, PCR primers were designed to amplify sequences near the 5' end of the BAC clone 56B23. These primers were used to amplify PCR fragments from the begomovirus-susceptible heritage tomato, S. lycopersicum 'Purple Russian', and a begomovirus-resistant breeding line, Gc43-3, from the tomato breeding program at San Carlos University, Guatemala with an introgression in this region from S. chilense LA2779 (Mejía et al., 2005). These sequences were aligned, and forward and reverse primers designed from conserved regions: forward primer FLUW25F (5' CAAGTGTGCATATACTTCATA(T/G)TCACC) and reverse primer, FLUW25R (5' CCATATATAACCTCTGTTTCTATTTCGAC). As expected, these primers gave PCR fragments for S. Iycopersicum and the S. chilense introgression of 475 and 641 bp , respectively. A third primer
pair was designed to give smaller PCR fragments from the aligned sequences of the FLUW25 fragment for the forward primer and sequences 3 ' of the FLUW25R primer for the reverse primer: forward primer, P6-25-F2, 5' GGT AGT GGA AAT GAT GCT GCT C, and reverse primer, P6-25R5, 5' GCT CTG CCT ATT GTC CCA TAT ATA ACC. The P6-25-F2/P6-25-R5 primers were expected to give fragment sizes for S. lycopersicum and the S. chilense LA2779 introgression of 320 bp and 453 bp , respectively.

DNA Extraction and PCR Methods: DNA was extracted from fresh leaves of plants with PUREGENE® DNA Purification Kit (Gentra Systems, Inc., Minneapolis, MN) and DNA adjusted to approximately $10 \mathrm{ng} / \mu \mathrm{l}$. PCR parameters were for $25-\mu \mathrm{l}$ reactions containing $2.5 \mu \mathrm{l} 2.5 \mathrm{mM}$ dNTPs, $5 \mu \mathrm{l} 5 \mathrm{x}$ buffer, $2.5 \mu \mathrm{l} 2.5 \mathrm{mM} \mathrm{MgCl} 2,0.1 \mu \mathrm{l}$ (0.5 units) GoTaq DNA polymerase (Promega Corp., Madison, WI), $2.5 \mu \mathrm{l}$ each forward and reverse primer at $10 \mu \mathrm{M}, 2-5 \mu \mathrm{l}$ of DNA extract, and water. PCR cycles were 94 C for $4 \mathrm{~min}, 35$ cycles of 94 C for $30 \mathrm{sec}, 53 \mathrm{C}$ for 1 min , and 72 C for 1 min . These cycles were followed by 72 C for 10 min , and then the reaction was held at 4 C . PCR reactions were performed in the MJ DNA Engine PT200 ThermocyclerTM (MJ Research Inc., Waltham, MA). PCR-amplified fragments were separated by gel electrophoresis with 1.5% agarose in $0.5 \times$ TBE buffer, stained with ethidium bromide, and visualized with UV light. ssDNA was digested in PCR reactions with shrimp alkaline phosphatase (Promega Corp.) and exonuclease I (Epicentre, Madison, WI) and the PCR-fragments were directly sequenced with Big Dye Sequencing Kit ${ }^{\text {TM }}$ and analyzed by the Biotechnology Center, University of WisconsinMadison.

Results and Discussion:

The FLUW25 primer pair amplified fragments of 480 bp and 640 bp from the susceptible line S. Iycopersicum Heinz 1706 and from the begomovirus-resistant breeding line, Gc43-3, with an introgression from S. chilense LA2779, respectively. Surprisingly, the Gh25-3 breeding line, which was derived from the begomovirus-resistant line Ih902 (see line 902 in Vidavsky and Czosnek, 1998) with resistance reported to be from an introgression from Solanum habrochaites, also gave a $640-\mathrm{bp}$ fragment. The heterozygous plant, Gh228-1, with resistance from lh902, gave the two sizes, 480 and 640 bp , for the Ty3/ty3 genotype (Fig. 1).

Fig. 1. PCR fragments with primers
FLUW25F/FLUW25R; Lane 1, 100-bp marker, Invitrogen, bright band, 600 bp ; Lane 2, water control; Lane 3, Gc43-3 (resistant); Lane 4, Gh228-1 (resistant, heterozygous); Lane 5, Gh25-3 (resistant); Lane 6, Heinz 1706 (susceptible).

The sequences for the FLUW25-PCR fragments from Heinz (475 bp) and Gc43-3 (641 bp) were aligned; and there were 18 SNPs and 5 indel differences (Maxwell et al., 2007). Single indels of $3,6,42$, and 143 nt and two indels of 5 nt were present. The sequence for the fragment from Heinz had 100% nt identity with the sequence of the comparable region of the BAC clone 56B23. In another susceptible line, M82-1-8, the sequence for the 475-bp fragment was identical to that of Heinz. Surprisingly, the sequence for the 640-bp fragment from Gh25-3 with resistance from Ih902 had 100% nt identity with the fragment from Gc43-3. The two fragments from Gh228-1 had 100\% nt identity with the 475- and 641-bp fragments from Heinz and Gc43-3, respectively. Additionally, the sequence of the 640-bp fragments from 11 other begomovirus-resistant breeding lines with
resistance from either S. chilense LA2779 or Ih902 had 99-100\% nt identity with Gc43-3. These FLUW25 primers were used to evaluate the presence of the Ty-3 locus in 102 breeding lines from the tomato breeding program at San Carlos University, Guatemala (Mejía et al., 2005), and the results were as expected except for the Gc171 line. This line was known to have an introgression, Ty-3a, in this region derived from S. chilense LA1932, but no PCR fragment was amplified by these primers. van Betteray and Smeets (unpublished) determined that the FLUW25R primer did not anneal to S. chilense LA1932 sequences. Thus, several more reverse primers were designed from the same area of the BAC clone 56B23 sequence. These were evaluated with Gc171 or lines selected from Gc171 crosses. One primer, P6-25-R5, gave fragments with FLUW25F for S. chilense LA1932 derived lines.

An additional primer set, P6-25-F2 and P6-25-R5, was designed to include the 143-nt ty$3 / T y-3$ indel and to give smaller fragments than the FLUW25 primer set (Fig. 2). With begomovirus-resistant breeding lines derived from either the S. chilense LA2779 source, Gc9, or the Ih902 line (Vidavsky and Czosnek, 1998), the expected 450-bp Ty-3 fragment was obtained. A 320-bp ty-3 fragment was amplified from breeding lines lacking the introgression from either of these two begomovirus-resistance sources. A 630-bp Ty-3a fragment was obtained from lines derived from S. chilense LA1932, such as Gc171. Heterozygous hybrids were easily detected with these primers which amplified two fragments corresponding to the S. lycopersicum ty-3 fragment (320 bp) and either the Ty-3 (450 bp) or the Ty-3a (630 bp) fragment (Fig. 2). No F1 hybrids were available to test for fragments with the Ty3/Ty3a genotype, but it is expected that this primer pair would also amplify two fragments (450 and 630 bp) with this genotype.

Fig. 2. PCR fragments with primers P6-25-F2/P6-25-R5. Lane 1, 100-bp Brenchtop DNA ladder, Promega; Lane 2, M82-1-8 (ty-3/ty-3); Lane 3, Gc9 (Ty-3/Ty-3); Lane 4, Romelia, F1 hybrid, (Ty-3/ty-3); Lane 5, Gc171 (Ty-3a/Ty-3a); Lane 6, GTc191-3, F1 hybrid, (Ty-3a/ty-3); Lane 7, 100bp marker.

The three sizes of the P6-25-F2/P6-25-R5 fragments were sequenced (Maxwell et al., 2007). The $320-b p$ and the $450-b p$ fragments corresponded to the sequences of S. Iycopersicum and of the Ty-3 locus associated with lines derived from S. chilense LA2779, respectively. The 650-bp fragment from Gc171 had two large inserts, when compared with the S. lycopersicum sequence.

The P6-25F2/P6-25R5 primer pair was used to screen several begomovirus-resistant hybrids from different commercial seed companies. Yet, another size PCR fragment of 660 bp was obtained with three commercial hybrids (Fig. 3). This fragment was sequenced and had $100 \% \mathrm{nt}$ identity with the fragment from S. chilense LA1969.

Fig. 3. 1.0\% agarose gel for the PCR products with primers, P6-25F2/P6-25R5. Lane 1, Promega, 100-bp ladder, Lane 2, susceptible (ty-3/ty-3), Lane 2, resistant hybrid (ty-3/Ty-3), Lane 4, resistant breeding line (Ty-3a/Ty-3a), Lane 5 and 6, two commercial hybrids (ty-3/Ty-3b). All bands were extracted from the gel and sequenced. Note sizes: ty-3 $=320 \mathrm{bp}, \mathrm{Ty}-3=450 \mathrm{bp}, \mathrm{Ty}-3 \mathrm{a}=630 \mathrm{bp}$, and $T y-3 b=660 \mathrm{bp}$.

Conclusions: These two sets of primers detect co-dominant SCAR markers, FLUW25 and P6-25, for the ty-3, Ty-3,Ty-3a and Ty-3b loci. It is not known how closely these markers are to the functional Ty-3 gene (Ji et al., 2007), so it is possible that some breeding lines would give false negative or false positive results. It is expected that these markers will be evaluated in various tomato breeding programs.

It is of interest that the introgressions from three different S. chilense accessions have different size introgressions. Only the Ty-3b introgression has 100\% nt identity with one of these accessions, LA1969, and these accession has been used as a source of the Ty-1 gene in several different laboratories.

Acknowledgements: This project was funded in part by USAID-CDR (TA-MOU-05-C25-037) and USAID-MERC (GEG-G-00-02-00003-00) grants to D. P. Maxwell, by the College of Agricultural and Life Sciences at University of Wisconsin-Madison, and by grants from Unilever Bestfoods Ltd. and the Florida Tomato Committee to J. W. Scott.

Literature Cited:

Agrama, H.A., and Scott, J.W. 2006. Quantitative trait loci for tomato yellow leaf curl virus and tomato mottle virus resistance in tomato. J. Am. Hortic. Sci. 131:267-272.
Chagué, V., Mercier, J.C., Guenard, M., de Courcel, A., and Vedel, F. 1997. Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor. Appl. Genet. 95:671-677.
Ji, Y., and Scott, J.W. 2006a. Development of breeder friendly markers for begomovirus resistance genes derived from L. chilense. Proc Tomato Breeders Table, Tampa, FL, USA. roundtable06.ifas.ufl.edu/Schedule.htm
Ji, Y. and Scott, J.W. 2006b. Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6. Rept. Tomato Genetics Coop. 56:22-25.

Ji, Y., Schuster, D.J., and Scott, J.W. 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breeding (in press)
Ji, Y., Salus, M.S., van Betteray, B., Smeets, J., Jensen, K.S., Martin, C.T., Mejía, L., Scott, J.W., Havey, M.J., and Maxwell, D.P. 2007.
Maxwell, D.P., Martin, C.T., Garcia, B.E., Salus, M.S., Jensen, K.S, Havey, M.J. and Mejia, L. 2007. Markers for tomato chromosomes. www.plantpath.wisc.edu/GeminivirusResistantTomatoes

Mejía, L., Teni, R.E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M.K., and Maxwell, D.P. 2005. Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. Acta Hort. 695:251-255.
Vidavsky, F., and Czosnek, H. 1998. Tomato breeding lines immune and tolerant to tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88:910-914.
Zamir, D., Michelson, I., Zakay, Y., Navot, N., Zeidan, N., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., van-Oss, H., Kedar, N., Rabinowitch, H.D., and Czosnek, H. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88:141-146.

HUJ-VF: 320 bp;ty3/ty3, source Hebrew University of Jerusalem, susceptible to begomoviruses.

ORIGIN

1 GGTAGTGGAA ATGATGCTGC TCAAATTATT GTGTGAACAT ATTATGAGAG GTAGGATTAA 61 GAATGAAGTT ATATAAGATA AAGTGGAAGT TACTTTTCGA AAAAAAAAGA AAGACGAAAA 121 AAATGAGATT GAAATGGATT GAATACGTGA AGAAGAGATG CATGGGTTCA CCAATAAAAA 181 GGTTTGAGAG TTTGACTTAA GAAGAGGTAG AAGTAGGTTG AAAAACAACT AGGTAAAGTT 241 TTACTTTTAG TTTTGTTTTG ATTGCACATT TTTTTAGTCG AAATAGAAAC AGAGGTTATA 301 TATGGGACAA TAGGCAGAGC

Gc143-2: 453 bp; Ty3/Ty3, introgression from S. chilense LA2779, resistant to begomoviruses.

ORIGIN

1
61
121
181
241
301
361
421

GgTAGTGGAA ATGATGCTGC TCAAATTAAT GTGTGAACAT GAGAGGTAGG ATTAGAAATG AAGTTATATA AGATAAAGTG GAAGTAACTT CCAATAAAAA AAGACGAAAA AAATGAGATT GAAATGGGTT GAATACGTGA AGAAGAGATG CATGGATTCA CCAATAAAAA GGTATGAGAG TTTGACTTAA GAAGATGTAG AAGTAGGTTG AAAAAAAACT ACGTAAAGAT GATTAGATAA GATATATCAC GAGGACACGA CTATAGCAAG ATATGGCAGC AGAGTTTTGT CGTATTGTTA CATGGAAGAG GTAAGGGACT TGTCTCTGCT TTTCATGCAC ATTGCTTCAA TTTACTTTGT TAGACTTGTT ATTTTACTTT TAGTTCTGTT TTGATTGCAC ATTTTTTTAG TCGAAATAGA AACAGAGGTT ATATATGGGA CAATAGGCAG AGC

Gc171: 623 bp;Ty3a/Ty3a, introgression from S. chilense LA1932, resistant to begomoviruses.

ORIGIN

GGTAGTGGAA ATGATGCTGC TCAAATTAAT GTGTGAACAT ATTATGAGAG GTAGGATTAG AAATGAAGAT ATGTAAGATA AAGTGGGTGA CTTTCAAAAA AAAAAAAGAC GAAAAAAATG AGATTGAAAT GGATTGAATA CGTGAAGAAG AGATGCATGG ATTCATCAAT AAAGAGGTGT GAGAGTTTCA CTTAAGAAGA AATAGAAGTA GGTTGAAGAA CAACTGAAGA TGATTAGATA AGATATATCA CAATTTCAAT AAATGAGGAC ACGACTATAG CAAGATATGG TAGCAGAGTT TTATCGTATT GTTACGTGGA AGAGGTAAGG TACTTGTCTC TACTTTTCAT GCACATTGCT TCAGTTTACT TTGTTAGACT TGTTATTTTA ATGAGATTCG AACCTTGGTA CAACAATATT

AAAAGAGTTT TACCCATCTT AGAATCATTG GGTCAACTAT ATGATTTATT CATTAGCTGC TTTATGTTAA TTTTATACAA ATATCTATCG ATTTCTACAT AGATATATAT ATTTCGTAAC

Commercial Hybrid AH: 660 bp; Ty3b, resistance from S. chilense LA1969, slightly resistant to begomoviruses.

ORIGIN
1 GGTAGTGGAA ATGATGCTGC TCAAATTAAT GTGTGATATG AGAGGTAGGA TTAGAAATAA 61 AGTTATATAA GAAAGTGGGT GACTTTCAAA AAAGAAAAAA AAGGAAGACT AAAAAATGAG
121 ATTGAAATAA GTTGAATACG TTAAGAAGAG ATGCATGGAT TCACCAATAA AGAGGTGTGA
181 GAGTTTGGCT TAAGAAGAGG TAGAAGTAGA TTGAAGAACA ACTAGGTGAA AGATGATTAG
241 ATAAGATATA TCACAATTTC AATAAATGAG GACGCGACTA TAGCAAGATA TGAAAGCAGA
301 GTTTTGTCGT ATTGTTACGT GGAAGAGGTA AGGGACTTGT CTCTACTTTT CATGCACATT
361 GCTTCAATTT ACTTTGTTAG ACTTGTTATT TTACTTTTAG TTTTGATTGC ATTATGTGTT
421 AACAATCAGA TTCGAATTTT GCTACAATAA CATTAAAAGA GTTTTACCCA TTCTAGAACT
481 ATTGAGTCAA CTATATGATT TATTCATTGA GTGCTTTATG TTAATTTTAT ACAAATACCT
541 ATCGATTTCT ATATAGATAT ATATATATTT CGTAACGGAG TTAATGGGTG TTCGAGCACC
601 CAGCGGACAC CACGTGGGTC CACCCCTGAC AGAGGTTATA TATGGGACAA TAGGCAGAGC

Sequence alignment of the four alleles at P6-25 marker-Gc171 (ТуЗа), Gc143-2 (Туз), HUJ-VF (ty3).		
ORIGIN		
Gc171	GGTAGTGGAAATGATGCTGCTCAAATTAATGTGTGAACATATTATGAGAGGTAGGATTAG	60
Com. AH	GGTAGTGGAAATGATGCTGCTCAAATTAATGTGTGA TATGAGAGGTAGGATTAG	54
Gc143-2	GGTAGTGGAAATGATGCTGCTCAAATTAATGTGTGAACATGAGAGGTAGGATTAG	55
HUJ-VF	GGTAGTGGAAATGATGCTGCTCAAATTAtTGTGTGAACATATTATGAGAGGTAGGATTAa	60
Consensus	ggtagtggaaatgatgctgctcaaatta tgtgtga gagaggtaggatta	
Gc171	AAATGAAGATATGTAAGATAAAGTGG. . GTGACTTTC . . . AAAAAAAAAAAAGACGAAA .	114
Com. AH	AAATaAAGtTATatAAGA. .AAGTGG..gTGACTTTC... AAAAAAgAAAAAaAaGgAAg	107
Gc143-2	AAATGAAGtTATaTAAGATAAAGTGGaagTaACTTcC.AAtAAAAAAAGACGAAA.	109
HUJ-VF	gAATGAAGtTATaTAAGATAAAGTGGaagTtACTtTtcgaAAAAAAAAgAAAGACGAAA.	119
Consensus	aat aag tat taaga aagtgg gt actt aa a a aaa a g aa	
Gc171 AAAATGAGATTGAAATGGATTGAATACGTGAAGAAGAGATGCATGGATTCATCAA	169
Com. AH	actaaAAAATGAGATTGAAATaagTTGAATACGTtAAGAAGAGATGCATGGATTCAcCAA	167
Gc143-2 AAAATGAGATTGAAATGGgTTGAATACGTGAAGAAGAGATGCATGGATTCAcCAA	164
HUJ-VF	. AAAATGAGATTGAAATGGATTGAATACGTGAAGAAGAGATGCATGGgTTCAcCAA	174
Consensus	aaaatgagattgaaat ttgaatacgt aagaagagatgcatgg ttca caa	
Gc171	TAAAGAGGTGTGAGAGTTTCACTTAAGAAGAAATAGAAGTAGGTTGAAGAACAACTG.	226
Com. AH	TAAAGAGGTGTGAGAGTTTggCTTAAGAAGAggTAGAAGTAGaTTGAAGAACAACTaggt	227
Gc143-2	TAAAaAGGTaTGAGAGTTTgACTTAAGAAGAtgTAGAAGTAGGTTGAAaAAaAACTacgt	224
HUJ-VF	TAAAaAGGTtTGAGAGTTTgACTTAAGAAGAggTAGAAGTAGGTTGAAaAACAACTaggt	234
Consensus	taaa aggt tgagagttt cttaagaaga tagaagtag ttgaa aa aact	
Gc171	. . AAGATGATTAGATAAGATATATCACAATTTCAATAAATGAGGACACGACTATAGCAA	283
Com. AH	gaAAGATGATTAGATAAGATATATCACAATTTCAATAAATGAGGACgCGACTATAGCAA.	286
Gc143-2	. aAAGATGATTAGATAAGATATATCA GAGGACACGACTATAGCAA	269
HUJ-VF	.aAAG.TttTacttTtAGtTtTgTtt..............TGAttgCACattTtTttagtc	279
Consensus	aag t t ag t t t ga c c t t	
Gc171	GATATGGTAGCAGAGTTTTATCGTATTGTTACGTGGAAGAGGTAAGGTACTTGTCTCTAC	343
Com. AH	GATATGaaAGCAGAGTTTTgTCGTATTGTTACGTGGAAGAGGTAAGGgACTTGTCTCTAC	346
Gc143-2	GATATGGcAGCAGAGTTTTgTCGTATTGTTACaTGGAAGAGGTAAGGgACTTGTCTCTgC	329
HUJ-VF	GAaATaGaAaCAGAGgTT.	297
Consensus	ga at a cagag tt	
Gc171	TTTTCATGCACATTGCTTCAGTTTACTTTGTTAGACTTGTTATTTTA.	390
Com. AH	TTTTCATGCACATTGCTTCAaTTTACTTTGTTAGACTTGTTATTTTActtttagttttga	406
Gc143-2	TTTTCATGCACATTGCTTCAaTTTACTTTGTTAGACTTGTTATTTTActtttagttctgt	389
HUJ-VF		297
Consensus 297		
Gc171 ATGAGATTCGAACCTTGGTACAACAATATTAAAAGAGTTTTA	432
Com. AH	ttgcattatgtgttaacaATcAGATTCGAAttTTGcTACAAtAAcATTAAAAGAGTTTTA	466
Gc143-2	tttgatt	396
HUJ-VF		297
Consensus		
Gc171	CCCATCTTAGAATCATTGGGTCAACTATATGATTTATTCATTAGCTGCTTTATGTTAATT	492
Com. AH	CCCATtcTAGAActATTGaGTCAACTATATGATTTATTCATTgagTGCTTTATGTTAATT	526
Gc143-2		396
HUJ-VF		297

Gc171	TTATACAAATATCTATCGATTTCTACATAGATATATATAT. .TTCGTAACAAAGTTAATG	550
Com. AH	TTATACAAATAcCTATCGATTTCTAtATAGATATATATATatTTCGTAACggAGTTAATG	586
Gc143-2		396
HUJ-VF		297
Consensus		
Gc171	AGTGCTCGAGCACCCAGCGGACAACACGTGGGTCCGCCC.TGACAGAGGTTATATATGGG	609
Com. AH	gGTGtTCGAGCACCCAGCGGACAcCACGTGGGTCCaCCCcTGACAGAGGTTATATATGGG	646
Gc143-2	. .gcacattttttTaGtcgaaatagaaACAGAGGTTATATATGGG	439
HUJ-VF	. ATATATGGG	306
Consensus	atatatggg	
Gc171	ACAATAGGCAGAGC	623
Com. AH	ACAATAGGCAGAGC	660
Gc143-2	ACAATAGGCAGAGC	453
HUJ-VF	ACAATAGGCAGAGC	320
Consensus	acaataggcagagc	

