A co-dominant SCAR marker, Mi23, for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm

(Aug. 18, 2007)
Brenda E. Garcia ${ }^{1,2}$, L. Mejía ${ }^{1,2}$, Melinda S. Salus ${ }^{1}$, Christopher T. Martin ${ }^{1}$, Stuart Seah ${ }^{3,4}$, Valerie M. Williamson ${ }^{3}$, and Douglas P. Maxwell ${ }^{1}$
${ }^{1}$ Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
${ }^{2}$ Universidad de San Carlos, Guatemala
${ }^{3}$ Department of Nematology, University of California, Davis, CA 95616
${ }^{4}$ Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, Private Bag 5, Wembley, WA 6913, Australia
Email: dpmax@plantpath.wisc.edu

The Mi-1 resistance gene was introgressed into cultivated tomato from Solanum peruvianum in the 1940's (Smith, 1940) and is currently the only source of root-knot nematode resistance in modern tomato cultivars. Mi-1 confers resistance to three species of root-knot nematode, Meloidogyne incognita, M. javanica, and M. arenaria. The principle means of utilization of this gene for developing nematode resistant tomato cultivars is by traditional breeding aided by markerassisted selection.

The Rex-1 CAPS marker is widely used to assay for the Mi-1 gene in tomato (Williamson et al., 1994). The Rex-1 marker has proven relatively reliable. However, El Mehrach et al. (2005) found that the REX marker gave false positives for the presence of Mi-1 with some of the begomovirus-resistant germplasm derived from Ih902, which has begomovirus-resistance genes reportedly introgressed from Solanum habrochaites (Vidavsky and Czosnek, 1998). Primers were designed that only amplified a PCR fragment, if the Mi-1.2 gene is present, but these primers do not distinguish heterozygous plants (El Mehrach et al., 2005). This report describes, Mi23, a codominant SCAR marker for the Mi-1.2 gene (Milligan et al., 1998), which is located within the Mi-1 locus (Seah et al., 2007).

Material and Methods

Primer design: The region on the short arm of chromosome 6 where the Mi-1 gene is located is well defined genetically and physically (see Seah et al., 2004; 2007). The Mi-1 locus in both resistant and susceptible tomato consists of two clusters with three and four copies of Mi-1 homologues (Seah et al., 2004), which in resistant tomato are approximately 300 kb apart (Vos et al., 1998). Comparison of the sequences flanking Mi-1.2 and its homologues from resistant and susceptible tomato revealed regions of high conservation, but also complex rearrangements including inverted chromosomal segments (Seah et al., 2004; 2007). In searching for an appropriate maker, Seah and Williamson noted that between the functional copy of Mi-1 gene (Mi1.2) and its closest downstream homologue, the pseudogene, Mi-1.3, lies 5 kb of sequence that is not predicted to encode protein sequences but is $>97 \%$ identical to the sequence between homologues Mi-1B and the pseudogene Mi-1A in susceptible tomato (see green boxes in Fig. 1 of Seah et al., 2007). Alignment of these sequences confirmed the strong similarity and revealed the presence of an indel of 57 nt . Primers (Mi23F and Mi23R) that flanked the indel and were conserved between S. Iycopersicum and S. peruvianum-derived regions were selected with the aid of the program Primer3 by Sean and Williamson. Mi23F is 5^{\prime}-TGG AAA AAT GTT GAA TTT CTT TTG- 3^{\prime}, and Mi23R is 5^{\prime} - GCA TAC TAT ATG GCT TGT TTA CCC- 3^{\prime}.

PCR methods: DNA was extracted from fresh leaves of plants with PUREGENE® DNA Purification Kit (Gentra Systems, Inc., Minneapolis, MN) and DNA adjusted to approximately 10 $\mathrm{ng} / \mu \mathrm{l}$. PCR parameters were for $25-\mu \mathrm{l}$ reactions containing $2.5 \mu \mathrm{l} 2.5 \mathrm{mM}$ dNTPs, $5 \mu \mathrm{l} 5 \mathrm{x}$ buffer, $2.5 \mu \mathrm{l} 2.5 \mathrm{mM} \mathrm{MgCl} 2,0.1 \mu \mathrm{l}$ (0.5 units) GoTaq DNA polymerase (Promega Corp., Madison, WI), 2.5 $\mu \mathrm{l}$ each forward and reverse primer at $10 \mu \mathrm{M}, 2-5 \mu \mathrm{l}$ of DNA extract, and water. PCR cycles were 94 C for 3 min , the 35 cycles of 94 C for $30 \mathrm{sec}, 57 \mathrm{C}$ for 1 min , and 72 C for 1 min . These cycles were followed by 72 C for 10 min , and then the reaction was held at 18 C . PCR reactions were performed in the MJ DNA Engine PT200 Thermocycler ${ }^{\text {TM }}$ (MJ Research Inc., Waltham, MA). PCRamplified fragments were separated by gel electrophoresis with 2% agarose in $0.5 \times$ TBE buffer, stained with ethidium bromide, and visualized with UV light. ssDNA was digested in PCR reactions with shrimp alkaline phosphatase (Progmega Corp.) and exonuclease I (Epicentre, Madison, WI); and the PCR-fragments directly sequenced with Big Dye Sequencing Kit ${ }^{\text {TM }}$ and analyzed by the Biotechnology Center, University of Wisconsin-Madison.

Germplasm: The line M82-1-8 (Ve, F1) and Gh13 (Mejía et al., 2005) were used as the milmi genotype (susceptible) and had the S. lycopersicum sequence for the REX-1 marker. Two lines, Motelle and Gh2, which are known to be resistant to root-knot nematode, were used as the Mi/Mi genotype and had the S. peruvianum sequence for the REX-1 marker. The F1 hybrid, Llanero (resistant to begomoviruses, GenTropic Seeds), which is known to be heterozygous (Milmi) (unpublished data), and Marwa (V, F2, N and tolerant to Tomato yellow leaf curl virus, Syngenta), which is presumably heterozygous, were used as the heterozygous controls. Other commercial F1 hybrids, which were determined to be heterozygous at the REX locus by sequence analysis, were Celebrity (Seminis Seeds), Charanda (Vilmorin), Crista (Harris Moran), Dominique (Hazera Genetics), Tequila (Vilmorin), and Viva Italia (Harris Moran). Rodeo (Heinz) was homozygous at the Mi locus, as determined by the REX-1 marker sequence. Titrit (F1, F2, Ve, TMV, FCRR, Royal Sluis) is not resistant to RKN, but tolerant to Tomato yellow leaf curl virus.

Results and discussion

The susceptible genotypes M82-1-8 and Gh13 (milmi), the resistant genotypes Motelle and Gh2 (Mi/Mi) gave PCR fragments of ca. 430 bp , and ca. 380 bp , respectively (Fig. 1). The heterozygous genotypes Llanero and Marwa gave three fragments, 380, 430 and 500 bp . The third, slower moving PCR-fragment from the heterozygous plants was shown to be a heteroduplex between the two fragments (380 and 430 bp), which migrated more slowly due to the presence of a 56 nucleotide loop in the heteroduplex molecules (Fig. 2).

The PCR fragments from M82-1-8 (AY596779) and Gh2 were sequenced and a BLAST search performed at the National Center for Biotechnology Information. The 432-bp fragment (GenBank no.) from M82-1-8 had 100\% nt identity with Solanum lycopersicum (cv. Heinz 1706, DQ863289) for nt 9,545-9,976, which is located between two resistance-like protein ORFs in cluster 2e. The 377-bp fragment from Gh2 had 100\% nt identity with the Mi-1 locus from Motelle (U81378, Solanum peruvianum introgression for Mi-1 locus) for nt 25,819-26,195, which is located between the Mi-1.2 resistance gene and a pseudo-resistance gene (Mi-1.3) in cluster 1p. Thus, the sequence of the PCR fragments matched the areas of the S. lycopersicum and S. peruvianum genomes used to design the primers. When the two sequences were compared, there were indels of 1 nt and 56 nt , which accounted for the differences in the length of the two sequences. Besides these two indels, there were 13 SNPs between these two sequences.

When six commercial hybrids (Celebrity, Charanda, Crista, Dominique, Tequila and Viva Italia) with reported resistance to root-knot nematode were tested with the primers Mi23F/Mi23R, all produced the pattern associated with heterozygous plants for the Mi-1 locus. Rodeo gave the expected single 380-bp fragment for the homozygous genotype (Mi/Mi). Titrit, which lacks the Mi-1 locus, gave the 420-bp fragment for the susceptible genotype. These primers were also tested on 73 breeding lines and hybrids for begomovirus resistance from the Guatemalan project (Mejía et al., 2005) as well as 31 other inbreds and hybrids, and unambiguous PCR patterns were obtain (Fig. 3).

Previously, false positives indicating the presence of the Mi-1 locus were obtained with two co-dominant CAPS markers, REX-1 (Williamson et al., 1994) and Cor-Mi (Contact Cornell University Foundation, Ithaca, NY) by El Mehrach et al. (2005) for the begomovirus-resistant breeding line, lh902 (F1, F2, Ve, Vidavsky and Czosnek, 1998). The line Ih902, which was susceptible to root-knot nematode (Williamson, unpublished data), is one of the main sources of begomovirus-resistance in the tomato breeding program at San Carlos University, Guatemala. The REX fragments from $\operatorname{lh} 902(\mathrm{mi} / \mathrm{mi})$ and Motelle ($\mathrm{Mi} / \mathrm{Mi}$) were sequenced and had 100% nt identity. Thus, the REX-1 locus was not predictive of the presence of the Mi-1.2 gene in this breeding line. Comparison of the PCR-Cor-Mi fragment sequence from Motelle (Mi/Mi), Ih902 and Moneymaker (mi/mi) showed that they were not identical. Surprisingly, the sequence of the CorPCR fragment from lh902 was identical with that from the TY52 line, which is homozygous for Ty-1/Ty-1 (pers. com., H. Czosnek). The Ty-1 begomovirus-resistance locus is derived from Solanum chilense LA1969 and was mapped to the short arm of chromosome 6 (Zamir et al., 1994). The REX-1 marker sequence for the TY52 line, which has the Ty-1 locus introgression from S. chilense, gives a distinct digestion pattern with Taql restriction enzyme (Milo et al., 2001). This indicates that the Ty-1 introgression exits in the region of the REX-1 marker for TY52. This has also been shown for many other lines derived from S. chilense LA2779 (unpublished data). Therefore, due to the limitations of these CAPS markers, it was of value to test Mi23 with tomato lines that gave false positives as well as lines known to have the S. chilense introgression for the Ty-1 locus.

When Ih902, TY52 (Ty-1/Ty-1), and 2 breeding lines [Gc9 (EU033925) and Gc143-2, both are S. chilense LA2779 derived line] homozygous for the Ty-1 locus were evaluated with the Mi23F/Mi23R primers, only the 430-bp PCR fragment, corresponding in size to that present in susceptible S. lycopersicon was amplified. This is what would be expected for these 4 lines, which are known to be susceptible to the root knot nematode. In this case, the Mi23 primer pair did not give a false positive with Ih902 for the Mi-1.2 gene. Surprisingly, sequence of these PCRfragments from the 4 lines were identical, and were distinguished by 16 SNPs and a 1-nt indel from the sequence from S. lycopersicon, M82-1-8. Besides the 56-nt indel, there were 6 SNPs between the $\operatorname{lh} 902$ sequence and that from Gh2 (Mi/Mi). It was concluded that Ih902 had S. chilense in this region. These results indicate that these primers might be useful to detect genotypes with the Ty-1 locus, i.e., introgression from S. chilense (see Protocol III, this web site).

It was of interest to evaluate the Mi23 marker with several wild species that are sources of disease resistance genes that have been introgressed into the short arm of chromosome 6. Three accessions of S. peruvianum (LA3858, LA3858, and LA0111) were tested. LA3858 (EU033932) and LA3900 gave 377-bp fragments, which had 100% nt identity with the fragment from Gh2 (Mi/Mi). S. peruvianum LA0111 yielded the heterozygous pattern with three fragments. S. arcanum, which is phylogentically closely related to S. peruvianum (F. Rodriguez and D. Spooner, pers. com.), yielded a 377-bp fragment (EU033928), which had 99\% nt identity with the fragment from Gh2 (3 SNPs). Two S. chilense accessions [LA2779 (EU033931) and LA1932 (EU033929)], which are known sources of resistance genes for begomoviruses, gave 433-bp fragments and had
96% nt identity with the sequence from M82-1-8. The two accessions of S. pimpinellifolium [LA1606 and LA2184 EU033930)] produced 432-bp fragments that were 99.8\% and 100\% identical, respectively, with that produced by M82-1-8.

Conclusions

The co-dominant SCAR marker, Mi23, has the advantage over previous PCR-based markers in that the restriction enzyme digestion step is not required, and it is more tightly linked with the Mi-1.2 gene. This marker does not give false positive fragments with the begomovirusresistant breeding lines derived from S. habrochaites (Vidavsky and Czosnek, 1998) and S. chilense (Ty-1 locus) (Agrama and Scott, 2006).

It is suggested from the analyses of these markers for the Ih902 germplasm that the order of markers is REX-1, Cor-Mi, Mi23, and Ty-1 (TG97). For other germplasm this order might be different. For the TY52 (Ty-1/Ty-1) line, REX-1, Mi23 and TY-1 (TG97) markers all had S. chilense sequences. In Gh2, the REX-1, Mi23, and Cor-Mi markers have S. peruvianum sequences and Ty-1 (TG97) has S. chilense sequence. Thus, it is possible to break the linkage between the Mi1.2 gene and the Ty-1 gene.

Sequences and their alignment are given below.
Acknowledgements: This project was funded in part by USAID-CDR (TA-MOU-05-C25-037) and USAID-MERC (GEG-G-00-02-00003-00) grants to D. P. Maxwell, by the College of Agricultural and Life Sciences at University of Wisconsin-Madison and University of California-Davis, and by the US Department of Agriculture's National Research Initiative Competitive Grants Program (NRICGP; award \#00-35300-9410) and the National Science Foundation Award IBN-872 3679 to V. Williamson. The authors thank Flor de Maya Rodriguez and Dr. D. Spooner, Horticulture Department, University of Wisconsin-Madison for supplying information and DNA for wild tomato species.

References:

Agrama, H.A., and Scott, J.W. 2006. Quantitative trait loci for Tomato yellow leaf curl virus and Tomato mottle virus resistance in tomato. J. Amer. Soc. Hort. Sci. 131:267-272.
El Mehrach, K., Mejía, L., Gharsallah-Couchane, S., Salus, M.S., Martin, C.T., Hatimi, A., Vidavski, F., Williamson, V., and Maxwell, D.P. 2005. PCR-based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. Acta Hort. 695:263-270.
Mejía, L., Teni, R.E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M.K., and Maxwell, D.P. 2005. Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. Acta Hort. 695:251-255.
Milligan, S.B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., and Williamson, V.M. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10: 1307-1319.
Milo, J. 2001. The PCR-based marker REX-1, linked to the gene Mi, can be used as a marker to TYLCV tolerance. Tomato Breeders Roundtable www.oardc.ohio-state.edu/tomato/TBRT\ 2001\ Abstracts.pdf
Seah, S., Yaghoobi, J., Rossi, M., Gleason, C.A., and Williamson, V.M. 2004. The nematode resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theor. Appl. Genet. 108:1635-1642.

Seah, S., Telleen, A.C., and Williamson, V.M. 2007. Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. Theor. Appl. Genet. 114:1289-1302.
Smith, P.G. 1944. Embryo culture of a tomato species hybrid. Proc. Amer. Soc. Hort. Sci. 44:413416.

Vidavsky, F., and Czosnek, H. 1998. Tomato breeding lines immune and tolerant to tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88:910-914.
Vos P., Simons G., Jesse T., Wijbrandi J., Heinen L., Hogers R., Frijters A., Groenendijk J., Diergaarde P., Reijans M., Fierens-Onstenk J., de Both M., Peleman J., Liharska T., Hontelez J. and Zabeau M. 1998. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat. Biotech. 16: 1365-1369.
Williamson, V.M., Ho, J.Y., Wu, F.F., Miller, N., and Kaloshian, I. 1994. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor. Appl. Genet. 87:757-763.
Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., van-Oss, H., Kedar, N., Rabinowitch, H.D., and Czosnek, H. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. Theor. Appl. Genet. 88:141-146.

Fig. 1. PCR with primers $\mathrm{Mi} 23 \mathrm{~F} / \mathrm{Mi} 23 \mathrm{R}$ at annealing temperature of 57 C for detection of the Mi-1 locus. Lane 1, 100-bp marker (Invitrogen); lane 2, M82-1-8 (mi/mi); lane 3, Motelle (Mi/Mi); lane 4, Marwa (VF2N and tolerance to Tomato yellow leaf curl virus); lane 5, Llanero (Mi/mi, as determined by genotype of parents).

Fig. 2. PCR with primers Mi23F/Mi23R at annealing temperature of 57 C . Lane 1, 100-bp marker (Invitrogen); lane 2, M82-1-8; lane 3, Motelle; lane 4, Llanero (heterozygous), lane 5, equal amounts of the PCR fragments for M82-1-8 and Motelle mixed together and subjected to the standard PCR cycles. Note that three bands are present and that these correspond to the identical sizes of the bands from the heterozygous hybrid Llanero.

Fig. 3. PCR with primers $\mathrm{Mi} 23 \mathrm{~F} / \mathrm{Mi} 23 \mathrm{R}$ at annealing temperature of 57 C for detection of the Mi-1 locus in tomato breeding lines.

Brenda Esperanza Garcia and Douglas P. Maxwell, University of Wisconsin-Madison, March 2007 (Contact: dpmax@plantpath.wisc.edu)

Alignment of sequences for the Mi23 locus for: M82 = M82-1-8, mi/mi; LA1606, S. pimpinellifolium; LA2184, S. pimpinellifolium; Gc9, resistant to begomoviruses, introgression from S. chilense LA2779; TY52, resistant to TYLCV, with introgression from S. chilense LA1969 for the Ty-1 gene; LA2779, S. chilense; LA1932, S. chilense; LA0392, S. arcanum; LA3858, S. peruvianum; LA3900, S. peruvianum; Gh2, Mi/Mi, resistant to root-knot nematode and also resistant to begomoviruses from Ih902.

M82 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT 60

LA1606 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT 60
LA2184 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT 60
Gc9
TY52
LA2779 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT60 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT 60 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT 60
LA1932 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTtAAAATATGAAAACAAGTATT 60
LA0392 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT 60
LA3858 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT 60
LA3900 TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT 60
Gh2
Consensus
TGGAAAAATGTTGAATTTCTTTTGTAAGTGTACAAAGTTAAAATTATGAAAACAAGTATT 60

M82	AGTTTCTAAAATTTTGGAATATTCTGGCAAAATTTGAGCGGAGAAATGTGACAGTTC	120
LA1606	TGGAGTTTCTAAAATTTTGGAATATTCTGGCAAAATTTGAGCGGAGAAATGTGACAGTTC	120
LA2184	TGGAGTTTCTAAAATTTTGGAATATTCTGGCAAAATTTGAGCGGAGAAATGTGACAGTTC	120
Gc9	TGGAGTTTCTAAAATTTTGGAATATTCTGGCtAAATTTGAGCGGAGAAATGTGACAGTTC	120
TY52	TGGAGTTTCTAAAATTTTGGAATATTCTGGCtAAATTTGAGCGGAGAAATGTGACAGTTC	120
LA2779	TGGAGTTTCTAAAATTTTGGAATATTCTGGCtAAATTTGAGCGGAGAAATGTGACAGTTC	120
LA1932	TGGAGTTTCTAAAATTTTGGAATATTCTaGCtAAATTTGAGCGGAGAAATGTGACAGTTC	120
LA0392	TGGAGTTTCTAAAATTTTGGAATATTCTGGCAAAATTTGAGCGGAGAAAT	110
LA3858	TGGAGTTTCTAAAATTTTGGAATATTCTGGCAAAATTTGAGCGGAGAAAT	110
LA3900	TGGAGTTTCTAAAATTTTGGAATATTCTGGCAAAATTTGAGCGGAGAAAT	110
Gh2	TGGAGTTTCTAAAATTTTGGAATATTCTGGCAAAATTTGAGCGGAGAAAT	110
Consensus	tggagtttctaaaattttggaatattct gc aaatttgagcggagaaat	
M82	ACGTCCAAATCTCCAGAGTCTTCATACATAGAAGTGTCAAACAAATTGGCAGGTTCTTAC	180
LA1606	ACGTCCAAATCTCCAGAGTCTTCATACATAGAAGTGTCAAACAAATTGGCAGGTTCTTAC	180
LA2184	ACGTCCAAATCTCCAGAGTCTTCATACATAGAAGTGTCAAACAAATTGGCAGGTTCTTAC	180
Gc9	ACGTCCAAATCTCCAGAGTCTTCATACATAGAAGTGTCAAACAAtTTaGCAGGTTCTTAC	180
TY52	ACGTCCAAATCTCCAGAGTCTTCATACATAGAAGTGTCAAACAAtTTaGCAGGTTCTTAC	180
LA2779	AtGTCCAAATCTCCAGAGTCTTCATACATAGAAGTGTCAAACAAATTGGCtGGTTCTTAC	180
LA1932	ACGTCCAAATCTCCAGAGTCTTCATACATAGAAGTGTCAAACAAATTGGCAGGTTCTTAC	180
LA0392	TGGCAGGTTCTTAC	124
LA3858	TGGCAGGTTCTTAC	124
LA3900	. TGGCAGGTTCTTAC	124
Gh2	TGGCAGGTTCTTAC	124
Consensus	t gc ggttcttac	

M82	A.CCTTTTACTGTTCTAAAAAGATGTCTACAATTTGTTTCATCAAAGCCCCGACGGAACT	239
LA1606	A.CCTTTTACTGTTCTAAAAAGATGTCTACAATTCGTTTCATCAAAGCCCCGACGGAACT	239
LA2184	A.CCTTTTACTGTTCTAAAAAGATGTCTACAATTTGTTTCATCAAAGCCCCGACGGAACT	239
Gc9	AtCtTTTTACTGTTCTAAAAAGATGTCTACAATTCGTTTCATCAAAGCCCCGACGGAACT	240
TY52	AtCtTTTTACTGTTCTAAAAAGATGTCTACAATTCGTTTCATCAAAGCCCCGACGGAACT	240
LA2779	AtCtTTTTACTGTTCTAAAAAGATGTCTACAATTcGTTTCATCAAAGCCCCGACGGAACT	240
LA1932	AtCtTTTTACTGTTCTAAAAAGATGTCTACAATTcGTTTCATCAAAGCCCCGACGGAACT	240
LA0392	AtCtTTTTACTGTTCTAAAAAGATGTCTACAATTcGTTTCATCAAAGCCCCGACGGAACT	184
LA3858	AtCtTTTTACTGTTCTAAAAAGATGTCTACAATTcGTTTgATCAAAGCCCCGACGGAACT	184
LA3900	AtCtTTTTACTGTTCTAAAAAGATGTCTACAATTcGTTTgATCAAAGCCCCGACGGAACT	184
Gh2	AtCtTTTTACTGTTCTAAAAAGATGTCTACAATTcGTTTgATCAAAGCCCCGACGGAACT	184
Consensus	a C ttttactgttctaaaaagatgtctacaatt gttt atcaaagccccgacggaact	
M82	ATTAAGTAGACGACGTTAGTAAAATAACAAGCAACCAAAGCAGTTACGAGAGATCACTTT	299
LA1606	ATTAAGTAGACGACGTTAGTAAAATAACAAGCAACCAAAGCAGTTACGAGAGATCACTTT	299
LA2184	ATTAAGTAGACGACGTTAGTAAAATAACAAGCAACCAAAGCAGTTACGAGAGATCACTTT	299
Gc9	ATTAAGTAGACGAgGTTAGTAAAATAACAAGCAACCAAAtCAGTTtaGAGAGATCACTTT	300
TY52	ATTAAGTAGACGAgGTTAGTAAAATAACAAGCAACCAAAtCAGTTtaGAGAGATCACTTT	300
LA2779	ATTAAGTAGACGAgGTTAGTAAAATAACAAGCAACCAAAGCAGTTtaGAGAGATCACTTT	300
LA1932	ATTAAGTAGACGACGTTAGTAAAATAACAAGCAACCAAAtCAGTTtaGAGAGATCACTTT	300
LA0392	ATTAAGTAGACGACGTTAGTAAAATAACAAGCAACCAAAGCAGTTtaGAGAGATCACTTT	244
LA3858	ATTAAGTAGACGAgGTTAGTAAAATAACAAGCAACCAAAGCAGTTtaGAGAGATCACTTT	244
LA3900	ATTAAGTAGACGAgGTTAGTAAAATAACAAGCAACCAAAGCAGTTtaGAGAGATCACTTT	244
Gh2	ATTAAGTAGACGAgGTTAGTAAAATAACAAGCAACCAAAGCAGTTtaGAGAGATCACTTT	244
Consensus	attaagtagacga gttagtaaaataacaagcaacCaaa cagtt gagagatcacttt	
M82		TTTCCCAGGGGATTTTTCTAGTAAGATTTTAATCAAGCACATTATCTACTAAATATATAG

239
239
239
240
240
240
240
184
184
184

299
299
299
300
300
300
300
244
244
244
244

359
359
359
360
360
360
360
304
304
304
304

419
419
419
420
420
420
420
364
364
364
364
M82 CCATATAGTATGC 432
LA1606 CCATATAGTATGC 432
LA2184 CCATATAGTATGC 432
Gc9CCATATAGTATGC433
TY52 CCATATAGTATGC 433
LA2779 CCATATAGTATGC 433
LA1932 CCATATAGTATGC 433
CCATATAGTATGC 377
CCATATAGTATGC 377
LA3858 CCATATAGTATGC 377
Gh2 CCATATAGTATGC 377
Consensus

M82, $\mathrm{mi} / \mathrm{mi}$ GenBank no. EU033926 SEQ: $432 \mathrm{bp} ;$
Composition $152 \mathrm{~A} ; 67 \mathrm{C} ; 74 \mathrm{G} ; 139 \mathrm{~T} ; 0$ OTHER
Percentage: 35.2\% A; 15.5\% C; 17.1\% G; 32.2\% T; 0.0\%OTHER
Molecular Weight (kDa): ssDNA: 133.54 dsDNA: 266.25
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT 61 TGGAGTTTCT AAAATTTTGG AATATTCTGG CAAAATTTGA GCGGAGAAAT GTGACAGTTC 121 ACGTCCAAAT CTCCAGAGTC TTCATACATA GAAGTGTCAA ACAAATTGGC AGGTTCTTAC 181 ACCTTTTACT GTTCTAAAAA GATGTCTACA ATTTGTTTCA TCAAAGCCCC GACGGAACTA
241 TTAAGTAGAC GACGTTAGTA AAATAACAAG CAACCAAAGC AGTTACGAGA GATCACTTTT 301 TTCCCAGGGG ATTTTTCTAG TAAGATTTTA ATCAAGCACA TTATCTACTA AATATATAGC 361 GAGTTAGTAT CATTATACTT TGTGTACAAA TTAAATTTCG ATTACTCTGG GTAAACAAGC 421 CATATAGTAT GC

S. pimpinellifolium LA1606

SEQ: 432 bp;
Composition 152 A; $68 \mathrm{C} ; 74 \mathrm{G} ; 138 \mathrm{~T} ; 0$ OTHER
Percentage: 35.2\% A; 15.7\% C; 17.1\% G; 31.9\% T; 0.0\%OTHER
Molecular Weight (kDa): ssDNA: 133.53 dsDNA: 266.25
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT
61 TGGAGTTTCT AAAATTTTGG AATATTCTGG CAAAATTTGA GCGGAGAAAT GTGACAGTTC 121 ACGTCCAAAT CTCCAGAGTC TTCATACATA GAAGTGTCAA ACAAATTGGC AGGTTCTTAC 181 ACCTTTTACT GTTCTAAAAA GATGTCTACA ATTCGTTTCA TCAAAGCCCC GACGGAACTA 241 TTAAGTAGAC GACGTTAGTA AAATAACAAG CAACCAAAGC AGTTACGAGA GATCACTTTT 301 TTCCCAGGGG ATTTTTCTAG TAAGATTTTA ATCAAGCACA TTATCTACTA AATATATAGC 361 GAGTTAGTAT CATTATACTT TGTGTACAAA TTAAATTTCG ATTACTCTGG GTAAACAAGC 421 CATATAGTAT GC

S. pimpinellifolium LA2184 GenBank no. EU033930

SEQ: 432 bp;
Composition 152 A; $67 \mathrm{C} ; 74 \mathrm{G} ; 139 \mathrm{~T} ; 0$ OTHER
Percentage: 35.2\% A; 15.5\% C; 17.1\% G; 32.2\% T; 0.0\%OTHER
Molecular Weight (kDa): ssDNA: 133.54 dsDNA: 266.25
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT
61 TGGAGTTTCT AAAATTTTGG AATATTCTGG CAAAATTTGA GCGGAGAAAT GTGACAGTTC
121 ACGTCCAAAT CTCCAGAGTC TTCATACATA GAAGTGTCAA ACAAATTGGC AGGTTCTTAC
181 ACCTTTTACT GTTCTAAAAA GATGTCTACA ATTTGTTTCA TCAAAGCCCC GACGGAACTA
241 TTAAGTAGAC GACGTTAGTA AAATAACAAG CAACCAAAGC AGTTACGAGA GATCACTTTT
301 TTCCCAGGGG ATTTTTCTAG TAAGATTTTA ATCAAGCACA TTATCTACTA AATATATAGC
361
GAGTTAGTAT CATTATACTT TGTGTACAAA TTAAATTTCG ATTACTCTGG GTAAACAAGC CATATAGTAT GC

Gc9, resistant to begomoviruses with introgression from S. chilense LA2779, susceptible to root-knot nematode, mi/mi, Ty1/Ty1; GenBank no. EU033925

SEQ: 433 bp ;
Composition 150 A; $66 \mathrm{C} ; 71 \mathrm{G} ; 146 \mathrm{~T} ; 0$ OTHER
Percentage: 34.6\% A; 15.2% C; 16.4% G; 33.7% T; 0.0\%OTHER
Molecular Weight (kDa): ssDNA: 133.77 dsDNA: 266.87
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT 61 TGGAGTTTCT AAAATTTTGG AATATTCTGG CTAAATTTGA GCGGAGAAAT GTGACAGTTC 121 ACGTCCAAAT CTCCAGAGTC TTCATACATA GAAGTGTCAA ACAATTTAGC AGGTTCTTAC 181 ATCTTTTTAC TGTTCTAAAA AGATGTCTAC AATTCGTTTC ATCAAAGCCC CGACGGAACT 241 ATTAAGTAGA CGAGGTTAGT AAAATAACAA GCAACCAAAT CAGTTTAGAG AGATCACTTT 301 TTTCCCACGG AATTTTTCTA GTAAGATTTT AACCAGGCAT ATTATCTTCT AAATATATAG 361 CGAGTTAGTA TTATTATACT TTGTCTACAA ATTAAATTTC GATTACTCTG GGTAAACAAG
421 CCATATAGTA TGC

TY52, resistant to begomoviruses (TYLCV) with introgression from S. chilense LA1969, Ty1/Ty1 (near isogenic line from Dani Zamir, Hebrew University of Jerusaleum) SEQ: $433 \mathrm{bp} ;$
Composition 150 A; $66 \mathrm{C} ; 71 \mathrm{G} ; 146 \mathrm{~T} ; 0$ OTHER
Percentage: 34.6% A; 15.2% C; 16.4% G; 33.7% T; 0.0% THER
Molecular Weight (kDa): ssDNA: 133.77 dsDNA: 266.87
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT
61 TGGAGTTTCT AAAATTTTGG AATATTCTGG CTAAATTTGA GCGGAGAAAT GTGACAGTTC
121 ACGTCCAAAT CTCCAGAGTC TTCATACATA GAAGTGTCAA ACAATTTAGC AGGTTCTTAC
181 ATCTTTTTAC TGTTCTAAAA AGATGTCTAC AATTCGTTTC ATCAAAGCCC CGACGGAACT
241 ATTAAGTAGA CGAGGTTAGT AAAATAACAA GCAACCAAAT CAGTTTAGAG AGATCACTTT
301 TTTCCCACGG AATTTTTCTA GTAAGATTTT AACCAGGCAT ATTATCTTCT AAATATATAG
361
421 CGAGTTAGTA TTATTATACT TTGTCTACAA ATTAAATTTC GATTACTCTG GGTAAACAAG CCATATAGTA TGC

LA2779, S. chilense, this accession was source of resistance for begomoviruses (J. W. Scott, University of Florida); GenBank no. EU033931

SEQ: 433 bp;
Composition $149 \mathrm{~A} ; 66 \mathrm{C} ; 74 \mathrm{G} ; 144 \mathrm{~T} ; 0$ OTHER
Percentage: 34.4% A; 15.2% C; 17.1% G; 33.3% T; 0.0% THER
Molecular Weight (kDa): ssDNA: 133.83 dsDNA: 266.87
ORIGIN

| 1 | TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT |
| :--- | :--- | :--- |
| 61 | TGGAGTTTCT AAAATTTTGG AATATTCTGG CTAAATTTGA GCGGAGAAAT GTGACAGTTC |
| 121 | ATGTCCAAAT CTCCAGAGTC TTCATACATA GAAGTGTCAA ACAAATTGGC TGGTTCTTAC |
| 181 | ATCTTTTTAC TGTTCTAAAA AGATGTCTAC AATTCGTTTC ATCAAAGCCC CGACGGAACT |
| 241 | ATTAAGTAGA CGAGGTTAGT AAAATAACAA GCAACCAAAG CAGTTTAGAG AGATCACTTT |
| 301 | TTTCCCACGG GATTTTTCTA GTAAGATTTT AACCAGACAT ATTATCTTCT AAATATATAG |
| 361 | CGAGTTAGTA TCATTATACT TTGTCTACAA ATTAAATTTC GATTACGCTG GGTAAACAAG |
| 421 | CCATATAGTA TGC |

LA1932, S. chilense, this accession was source of resistance for begomoviruses (J. W. Scott, University of Florida); GenBank no. EU033929

SEQ: 433 bp;
Composition 150 A; $68 \mathrm{C} ; 71 \mathrm{G} ; 144 \mathrm{~T} ; 0$ OTHER
Percentage: 34.6% A; 15.7% C; 16.4% G; 33.3\% T; 0.0\%OTHER
Molecular Weight (kDa): ssDNA: 133.74 dsDNA: 266.87
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTT AAAATATGAA AACAAGTATT 61 TGGAGTTTCT AAAATTTTGG AATATTCTAG CTAAATTTGA GCGGAGAAAT GTGACAGTTC 121 ACGTCCAAAT CTCCAGAGTC TTCATACATA GAAGTGTCAA ACAAATTGGC AGGTTCTTAC 181 ATCTTTTTAC TGTTCTAAAA AGATGTCTAC AATTCGTTTC ATCAAAGCCC CGACGGAACT 241 ATTAAGTAGA CGACGTTAGT AAAATAACAA GCAACCAAAT CAGTTTAGAG AGATCACTTT 301 TTTCCCACGG GATTTTTCTA GTAAGATTTT AACCAGGCAT ATTATCTTCT AAATATATAG CGAGTTAGTA TCATTATACT TTGTCTACAA ATTAAATTTC GATTACTCTG GGTAAACAAG CCATATAGTA TGC

LA0392, S. arcanum, closely related to S. peruvianum; GenBank no. EU033928 SEQ: 377 bp;
Composition 129 A; $54 \mathrm{C} ; 65 \mathrm{G} ; 129 \mathrm{~T} ; 0$ OTHER
Percentage: 34.2\% A; 14.3\% C; 17.2\% G; 34.2\% T; 0.0\%OTHER
Molecular Weight (kDa): ssDNA: 116.58 dsDNA: 232.35
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT
61 TGGAGTTTCT AAAATTTTGG AATATTCTGG CAAAATTTGA GCGGAGAAAT TGGCAGGTTC
121 TTACATCTTT TTACTGTTCT AAAAAGATGT CTACAATTCG TTTCATCAAA GCCCCGACGG
181 AACTATTAAG TAGACGACGT TAGTAAAATA ACAAGCAACC AAAGCAGTTT AGAGAGATCA
241 CTTTTTTCCC ATGGGATTTT TCTAGTAAGA TTTTAACCAG GCATATTATC TTCTAAATAT
301 GTAGCGAGTT AGTATCATTA TACTTTGTCT ACAAATTAAA TTTCGATTAC TCTGGGTAAA
361 CAAGCCATAT AGTATGC
LA3858, S. peruvianum, this species is the reported source of resistance for Mi gene;
GenBank no. EU033932
SEQ: 377 bp;
Composition 129 A; $53 \mathrm{C} ; 67 \mathrm{G} ; 128 \mathrm{~T} ; 0$ OTHER
Percentage: 34.2\% A; 14.1\% C; 17.8% G; 34.0\% T; 0.0\%OTHER
Molecular Weight (kDa): ssDNA: 116.65 dsDNA: 232.35
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT 61 TGGAGTTTCT AAAATTTTGG AATATTCTGG CAAAATTTGA GCGGAGAAAT TGGCAGGTTC
121 TTACATCTTT TTACTGTTCT AAAAAGATGT CTACAATTCG TTTGATCAAA GCCCCGACGG
181 AACTATTAAG TAGACGAGGT TAGTAAAATA ACAAGCAACC AAAGCAGTTT AGAGAGATCA
241
301
CTTTTTTCCC ACGGGATTTT TCTAGTAAGA TTTTAACCAG GCATATTATC TTCTAAATAT
GTAGCGAGTT AGTATCATTA TACTTTGTCT ACAAATTAAA TTTCGATTAC TCTGGGTAAA CAAGCCATAT AGTATGC

LA3900, S. peruvianum, this species is the reported source of resistance for Mi gene SEQ: 377 bp;
Composition 129 A; $53 \mathrm{C} ; 67 \mathrm{G} ; 128 \mathrm{~T} ; 0$ OTHER
Percentage: 34.2\% A; 14.1\% C; 17.8% G; 34.0\% T; 0.0\%OTHER
Molecular Weight (kDa): ssDNA: 116.65 dsDNA: 232.35
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT
61 TGGAGTTTCT AAAATTTTGG AATATTCTGG CAAAATTTGA GCGGAGAAAT TGGCAGGTTC
121 TTACATCTTT TTACTGTTCT AAAAAGATGT CTACAATTCG TTTGATCAAA GCCCCGACGG
181 AACTATTAAG TAGACGAGGT TAGTAAAATA ACAAGCAACC AAAGCAGTTT AGAGAGATCA
241 CTTTTTTCCC ACGGGATTTT TCTAGTAAGA TTTTAACCAG GCATATTATC TTCTAAATAT
301 GTAGCGAGTT AGTATCATTA TACTTTGTCT ACAAATTAAA TTTCGATTAC TCTGGGTAAA
361 CAAGCCATAT AGTATGC
Gh2, $\mathrm{Mi} / \mathrm{Mi}$, resistant to root knot nematode and also begomoviruses with Ty1/Ty1, Tу3/Ту3; GenBank no. EU033926

SEQ: 377 bp;
Composition 129 A; $53 \mathrm{C} ; 67 \mathrm{G} ; 128 \mathrm{~T} ; 0$ OTHER
Percentage: 34.2\% A; 14.1\% C; 17.8\% G; 34.0\% T; 0.0\%OTHER
Molecular Weight (kDa): ssDNA: 116.65 dsDNA: 232.35
ORIGIN
1 TGGAAAAATG TTGAATTTCT TTTGTAAGTG TACAAAGTTA AAATTATGAA AACAAGTATT 61 TGGAGTTTCT AAAATTTTGG AATATTCTGG CAAAATTTGA GCGGAGAAAT TGGCAGGTTC 121 TTACATCTTT TTACTGTTCT AAAAAGATGT CTACAATTCG TTTGATCAAA GCCCCGACGG 181 AACTATTAAG TAGACGAGGT TAGTAAAATA ACAAGCAACC AAAGCAGTTT AGAGAGATCA

241
301
361

CTTTTTTCCC ACGGGATTTT TCTAGTAAGA TTTTAACCAG GCATATTATC TTCTAAATAT GTAGCGAGTT AGTATCATTA TACTTTGTCT ACAAATTAAA TTTCGATTAC TCTGGGTAAA CAAGCCATAT AGTATGC

Calculations from DNAMAN software:

Distance matrix of 11 sequences

M82	0									
LA1606	0.002	0								
LA2184	0.000	0.002	0							
Gc9	0.039	0.037	0.039	0						
TY52	0.039	0.037	0.039	0.000	0					
LA2779	0.037	0.035	0.037	0.021	0.021	0				
LA1932	0.035	0.032	0.035	0.018	0.018	0.021	0			
LA0392	0.029	0.027	0.029	0.021	0.021	0.019	0.019	0		
LA3858	0.035	0.032	0.035	0.019	0.019	0.016	0.021	0.008	0	
LA3900	0.035	0.032	0.035	0.019	0.019	0.016	0.021	0.008	0.000	0
Gh2	0.035	0.032	0.035	0.019	0.019	0.016	0.021	0.008	0.000	0.000

Homology matrix of 11 sequences (does not consider the large indel)

Homology Tree from DNAMAN software

