PCR protocol for the co-dominant SCAR marker, FLUW-25, for detection of the introgression at $\mathbf{2 5 c M}$ (Ty-3 locus) of chromosome 6

Melinda S. Salus, Christopher T. Martin, and Douglas P. Maxwell
University of Wisconsin-Madison

Sept. 14, 2006; updated Aug. 18, 2007
Design of FLUW-25 primers:
Ji and Scott (2006a, 2006b; Ji et al., 2007) mapped the Ty-3 gene from LA2779 (S. chilense) for resistance to Tomato yellow leaf curl virus to an introgression near the FER locus (25 cM) on chromosome 6. The BAC clone 56B23 (AY678298) contains the FER gene. PCR primers were designed by Ji and Scott (Lend, Ji et al. 2007. Mol. Breeding, in press) to amplify sequences near the 5' end of the BAC clone. These primers were used to amplify PCR fragments from the begomovirus-susceptible heritage tomato, S. Iycopersicum 'Purple Russian', and a begomovirus-resistant breeding line, Gc43, from a tomato breeding program in Guatemala with an introgression in this region (Mejía et al., 2005). These sequences were aligned, and forward and reverse primers designed: FLUW-25F (5' CAAGTGTGCATATACTTCATA(T/G)TCACC) and a reverse primer, FLUW-25R (5' CCATATATAACCTCTGTTTCTATTTCGAC). It was expected that these primers would give PCR fragments for S. lycopersicum and the LA2779 introgression of 475 and 641 bp , respectively (M. S. Salus, C. T. Martin, and D. P. Maxwell, personal communication).

FLUW-25F (DM6-F30)

$$
5^{\prime} \text { CAAGTGTGCATATACTTCATA(T/G)TCACC }
$$

FLUW-25R (DM6-R30)

5' CCA TAT ATA ACC TCT GTT TCT ATT TCG AC 3'

PCR conditions: $25 \mu \mathrm{l}$ reaction: $2.5 \mu \mathrm{l} 2.5 \mathrm{mM}$ dNTPs, $2.5 \mu \mathrm{l}$ 10X buffer, $2.5 \mu \mathrm{l} 25 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 0.1 \mu \mathrm{l}$ Taq polymerase (Promega Corp., Madison, WI), 2.5 ul each forward and reverse sense primer at $10 \mu \mathrm{M}, 5 \mu \mathrm{ul}$ of $15 \mathrm{ng} / \mu \mathrm{l}$ DNA extract and $\mathrm{H}_{2} \mathrm{O}$. PCR cycler (MJ DNA Engine PT200 Thermocylcer ${ }^{\text {TM }}$, MJ Research Inc., Waltham, MA) parameter: denaturation at 94 C for 3 min , then 35 cycles at 94 C for 30 sec , annealing at 53 C for 1 min , and extension at 72 C for 1 min , followed by 72 C for 10 min , then the reaction is held at 4 C .

Results:

These FLUW-25 primers amplify fragments of 480 bp for S. lycopersicum and about 640 bp for the introgression in lines from HUJ (Ih902-derived lines from S. habrochaites LA1777 and LA0386, Vidavsky and Czosnek, 1998) and U of FL (derived from LA2779). The two fragment sizes were sequenced from a putative heterozygous plant (228-1), and the sequences were as expected for each fragment size. For an F2 population of

Gh13 (resistant) x M82 (susceptible), the ratio of introgression-homozygous: heterozygous: homozygous S. lycopersicum was 18:29:17, respectively.


```
Lane 1, Heinz (susceptible)
Lane 2, Gh25
Lane 3, 228-1(Ih902 x Daniella), selected in Morocco
Lane 4, Gc43 (Gc9 x Marina)
Lane 5, water control
Lane 6, 100-bp Invitrogen marker, bright band=600 bp
```

Note: Gh25, 228-1, and Gc43 are resistant to begomoviruses in Guatemala.

When these primers were used with begomovirus-resistant lines derived from LA1932 S. chilense, no fragment was produced. It was know than these lines had an introgression at FER locus from sequence of the G8 gene of the BAC clone. A new set of primers was designed (P6-25 locus), which amplified difference size fragments from S. lycopersicum, LA2779-derived lines, and LA1932-derived lines (P6-25 co-dominant SCAR marker, this web site).

Surprisingly, the sequence of the 600-bp fragment from lines derived from the resistance sources (902, S. habrochaites) from Hebrew University of Jerusalem, e.g., Gh25, was identical to the 600-bp fragment from LA2779-derived lines. It is unexpected that the sequences from S. habrochaites and S. chilense would be identical, as these species fall into distinct phylogenetic clades (Salus and Maxwell, unpublished)

Acknowledgements: This project was funded in part by USAID-CDR (TA-MOU-05-C25-037) and USAID-MERC (GEG-G-00-02-00003-00) grants to D. P. Maxwell, and by the College of Agricultural and Life Sciences at University of Wisconsin-Madison.

Reference:

Ji, Y., and Scott, J.W. 2006a. Development of breeder friendly markers for begomovirus resistance genes derived from L. chilense. Proc Tomato Breeders Roundtable, Tampa, FL, USA. roundtable06.ifas.ufl.edu/Schedule.htm
Ji, Y. and Scott, J.W. 2006b. Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6. Rept. Tomato Genetics Coop. 56: (in press).
Ji, Y., Schuster, D.J., and Scott, J.W. 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breeding (in press)
Mejía, L., Teni, R.E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M.K., and Maxwell, D.P. 2005. Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. Acta Hort. 695:251-255.

Vidavsky, F., and Czosnek, H. 1998. Tomato breeding lines immune and tolerant to tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88:910-914.

Sequences:

Heinz 1706 (S. Iycopersicum)

```
1 CAAGTGTGCA TATACTTCAT AGTCACCCAA CCACTATTTC TTCCAAACCT TCAACCTTAC
61 CATCGTATTA GCATAGGGTG AGTGAAATGT AGGATTATAC ATGGGGTATT CAGTCGTAAG
121 AACGTGTTAT AAAGGCTAAA AGGGAAGTTC TACTTCTTGT AAAATATAAA GGTAGTGGAA
181 ATGATGCTGC TCAAATTATT GTGTGAACAT ATTATGAGAG GTAGGATTAA GAATGAAGTT
241 ATATAAGATA AAGTGGAAGT TACTTTTCGA AAAAAAAAGA AAGACGAAAA AAATGAGATT
301 GAAATGGATT GAATACGTGA AGAAGAGATG CATGGGTTCA CCAATAAAAA GGTTTGAGAG
361 TTTGACTTAA GAAGAGGTAG AAGTAGGTTG AAAAACAACT AGGTAAAGTT TTACTTTTAG
421 TTTTGTTTTG ATTGCACATT TTTTTAGTCG AAATAGAAAC AGAGGTTATA TATGG
```

Gc43 (35a) (resistance from LA2779)

1	CAAGTGTGCA	TATACTTCAT	AGTCACCCCA	CC	TTCCAAACCT	TAAACCTTAC
61	CCTTAAGTTT	AAAGTGACAT	GGAGATTGAT	GATGATCTTG	TACATTGTAT	TAGCATAGGG
121	TGAGTGAAAT	GTATACATGG	GGTATTCAGT	CGTAAGAACG	TGTTATAAAG	GCTTAAAGGG
181	AAGTTCTACT	TGTAAAATAT	AAAGGTAGTG	GAAATGATGC	TGCTCAAATT	AATGTGTGAA
241	CATGAGAGGT	AGGATTAGAA	ATGAAGTTAT	ATAAGATAAA	GTGGAAGTAA	CTTCCAATAA
301	AAAAAGACGA	AAAAAATGAG	ATTGAAATGG	GTTGAATACG	TGAAGAAGAG	ATGCATGGAT
361	TCACCAATAA	AAAGGTATGA	GAGTTTGACT	TAAGAAGATG	TAGAAGTAGG	TTGAAAAAAA
421	ACTACGTAAA	GATGATTAGA	TAAGATATAT	CACGAGGACA	CGACTATAGC	AAGATATGGC
481	AGCAGAGTTT	TGTCGTATTG	TTACATGGAA	GAGGTAAGGG	ACTTGTCTCT	GCTTTTCATG
541	CACATTGCTT	CAATTTACTT	TGTTAGACTT	GTTATTTTAC	TTTTAGTTC	GTTTTGATTG
601	CACATTTTTT	TAGTCG	G	GTTATATAT		

Alignment of Heinz (susceptible) by Gc43 (LA2779-derived resistance to begomoviruses in Guatemala) for the co-dominant SCAR marker, FLUW-25

FLUW-25 (25 cM)Chromosome 6: Sept. 14, 2006 - Heinz = Heinz 1706 and 35a = Gc43 (introgression from S. chilense LA2779)

35a_F30-R30	CAAGTGTGCATATACTTCATAGTCACCCCACCACTATTTCTTCCAAACCTTAAACCTTAC	60
HeinzF30-R30	CAAGTGTGCATATACTTCATAGTCACCCaACCACTATTTCTTCCAAACCTTcAACCTTAC	60
Consensus	caagtgtgcatatacttcatagtcaccc accactatttcttccaaacctt aaccttac	
35a_F30-R30	CCTTAAGTTTAAAGTGACATGGAGATTGATGATGATCTTGTACATTGTATTAGCATAGGG	120
HeinzF30-R30	C. ATcGTATTAGCATAGGG	78
Consensus	c at gtattagcataggg	
35a_F30-R30	TGAGTGAAATGTA. TACATGGGGTATTCAGTCGTAAGAACGTGTTATAAAGGCTT	174
HeinzF30-R30	TGAGTGAAATGTAggattaTACATGGGGTATTCAGTCGTAAGAACGTGTTATAAAGGCTa	138
Consensus	tgagtgaaatgta tacatggggtattcagtcgtaagaacgtgttataaaggct	
35a_F30-R30	AAAGGGAAGTTCTACTT. . . GTAAAATATAAAGGTAGTGGAAATGATGCTGCTCAAATTA	231
HeinzF30-R30	AAAGGGAAGTTCTACTTcttGTAAAATATAAAGGTAGTGGAAATGATGCTGCTCAAATTA	198
Consensus	aaagggaagttctactt gtaaaatataaggtagtggaaatgatgctgctcaaatta	
35a_F30-R30	ATGTGTGAACAT GAGAGGTAGGATTAGAAATGAAGTTATATAAGATAAAGTGGAA	286
HeinzF30-R30	tTGTGTGAACATattatGAGAGGTAGGATTAagAATGAAGTTATATAAGATAAAGTGGAA	258
Consensus	tgtgtgaacat gagaggtaggatta aatgaagttatataagataaagtggaa	
35a_F30-R30	GTAACTTCC. AATAAAAAAAGACGAAAAAAATGAGATTGAAATGGGTTGAATACGT	341
HeinzF30-R30	GTtACTTttcgaaaAAaAAAgAAAGACGAAAAAAATGAGATTGAAATGGaTTGAATACGT	318
Consensus	gt actt aa aaa aaagacgaaaaaatgagattgaaatgg ttgaatacgt	
35a_F30-R30	GAAGAAGAGATGCATGGATTCACCAATAAAAAGGTATGAGAGTTTGACTTAAGAAGATGT	401
HeinzF30-R30	GAAGAAGAGATGCATGGgTTCACCAATAAAAAGGTtTGAGAGTTTGACTTAAGAAGAgGT	378
Consensus	gaagaagagatgcatgg ttcaccaataaaaggt tgagagtttgacttaagaaga gt	
35a_F30-R30	AGAAGTAGGTTGAAAAAAAACTACGTAAAGATGATTAGATAAGATATATCACGAGGACAC	461
HeinzF30-R30	AGAAGTAGGTTGAAAAAcAACTAgGTAAAG .	408
Consensus	agaagtaggttgaaaaa aacta gtaaag	
35a_F30-R30	GACTATAGCAAGATATGGCAGCAGAGTTTTGTCGTATTGTTACATGGAAGAGGTAAGGGA	521
HeinzF30-R30		408
Consensus		
35a_F30-R30	CTTGTCTCTGCTTTTCATGCACATTGCTTCAATTTACTTTGTTAGACTTGTTATTTTACT	581
HeinzF30-R30	TTTTACT	415
Consensus	ttttact	
35a_F30-R30	TTTAGTTCTGTTTTGATTGCACATTTTTTTAGTCGAAATAGAAACAGAGGTTATATATGG	641
HeinzF30-R30	TTTAGTTtTGTTTTGATTGCACATTTTTTTAGTCGAAATAGAAACAGAGGTTATATATGG	475
Consensus	tttagtt tgttttgattgcacatttttttagtcgaaatagaaacagaggttatatatgg	

